Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the increasing awareness of global environmental protection, green production has become a significant part for enterprises to remain in a competitive position. For a manufacturing company, selecting the most suitable green supplier plays an important role in enhancing its green production performance. In this paper, we develop a new green supplier evaluation and selection model through the combination of heterogeneous criteria information and an extended multi-attributive border approximation area comparison (MABAC) method. Considering the complexity of decision context, heterogeneous information, including real numbers, interval numbers, trapezoidal fuzzy numbers, and linguistic hesitant fuzzy sets, is utilized to evaluate alternative suppliers with respect to the selected criteria. A maximizing consensus approach is constructed to determine the weight of each decision-maker based on incomplete weighting information. Then, the classical MABAC method is modified for ranking candidate green suppliers under the heterogeneous information environment. Finally, the developed green supplier selection model is applied in a case study from the automobile industry to illustrate its practicability and efficiency.

Details

Title
Green Supplier Evaluation and Selection with an Extended MABAC Method Under the Heterogeneous Information Environment
Author
Xue-Guo, Xu 1 ; Shi, Hua 1   VIAFID ORCID Logo  ; Li-Jun, Zhang 1 ; Hu-Chen, Liu 2   VIAFID ORCID Logo 

 School of Management, Shanghai University, Shanghai 200444, China; [email protected] (X.-G.X.); [email protected] (H.S.) 
 College of Economics and Management, China Jiliang University, Hangzhou 310018, China; School of Economics and Management, Tongji University, Shanghai 200092, China 
First page
6616
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2533341223
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.