Abstract

Hand gesture recognition is one of the system that can detect the gesture of hand in a real time video. The gesture of hand is classify within a certain area of interest. In this study, designing of the hand gesture recognition is one of the complicated job that involves two major problem. Firstly is the detection of hand. Another problem is to create the sign that is suitable to be used for one hand in a time. This project concentrates on how a system could detect, recognize and interpret the hand gesture recognition through computer vision with the challenging factors which variability in pose, orientation, location and scale. To perform well for developing this project, different types of gestures such as numbers and sign languages need to be created in this system. The image taken from the realtime video is analysed via Haar-cascaded Classifier to detect the gesture of hand before the image processing is done or in the other word to detect the appearance of hand in a frame. In this project, the detection of hand will be done using the theories of Region of Interest (ROI) via Python programming. The explanation of the results will be focused on the simulation part since the different for the hardware implementation is the source code to read the real-time input video. The developing of hand gesture recognition using Python and OpenCV can be implemented by applying the theories of hand segmentation and the hand detection system which use the Haar-cascade classifier.

Details

Title
Hand gesture recognition on python and opencv
Author
Ismail, Ahmad Puad 1 ; Farah Athirah Abd Aziz 1 ; Nazirah Mohamat Kasim 1 ; Daud, Kamarulazhar 1 

 Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), Cawangan Permatang Pauh, Pulau Pinang, Malaysia 
Publication year
2021
Publication date
Feb 2021
Publisher
IOP Publishing
ISSN
17578981
e-ISSN
1757899X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2513044325
Copyright
© 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.