Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Object detection based on deep learning is one of the most important and fundamental tasks of computer vision. High-performance detection algorithms have been widely used in many practical fields. For the management of workers wearing helmets in construction scenarios, this paper proposes a framework model based on the YOLOv5 detection algorithm, combined with multi-object tracking algorithms, to monitor and track whether workers wear safety helmets in real-time video. The improved StrongSORT tracking algorithm of DeepSORT is selected to reduce the loss of the tracked object caused by the occlusion, trajectory blur, and motion scale of the object. The safety helmet dataset is trained with YOLOv5s, and the best result of training is used as the weight model in the StrongSORT tracking algorithm. The experimental results show that the [email protected] of all classes in the YOLOv5s model can reach 95.1% in the validation dataset, [email protected]:0.95 is 62.1%, and the precision of wearing helmet is 95.7%. After the box regression loss function was changed from CIOU to Focal-EIOU, the [email protected] increased to 95.4%, [email protected]:0.95 increased to 62.9%, and the precision of wearing helmet increased to 96.5%, which were increased by 0.3%, 0.8% and 0.8%, respectively. StrongSORT can update object trajectories in video frames at a speed of 0.05 s per frame. Based on the improved YOLOv5s combined with the StrongSORT tracking algorithm, the helmet-wearing tracking detection can achieve better performance.

Details

Title
Helmet-Wearing Tracking Detection Based on StrongSORT
Author
Li, Fufang; Chen, Yan  VIAFID ORCID Logo  ; Hu, Ming; Luo, Manlin; Wang, Guobin
First page
1682
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2774982985
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.