Abstract

Given the barriers to early detection of gestational diabetes mellitus (GDM), this study aimed to develop an artificial intelligence (AI)-based prediction model for GDM in pregnant Mexican women. Data were retrieved from 1709 pregnant women who participated in the multicenter prospective cohort study ‘Cuido mi embarazo’. A machine-learning-driven method was used to select the best predictive variables for GDM risk: age, family history of type 2 diabetes, previous diagnosis of hypertension, pregestational body mass index, gestational week, parity, birth weight of last child, and random capillary glucose. An artificial neural network approach was then used to build the model, which achieved a high level of accuracy (70.3%) and sensitivity (83.3%) for identifying women at high risk of developing GDM. This AI-based model will be applied throughout Mexico to improve the timing and quality of GDM interventions. Given the ease of obtaining the model variables, this model is expected to be clinically strategic, allowing prioritization of preventative treatment and promising a paradigm shift in prevention and primary healthcare during pregnancy. This AI model uses variables that are easily collected to identify pregnant women at risk of developing GDM with a high level of accuracy and precision.

Details

Title
MIDO GDM: an innovative artificial intelligence-based prediction model for the development of gestational diabetes in Mexican women
Author
Gallardo-Rincón, Héctor 1 ; Ríos-Blancas, María Jesús 2 ; Ortega-Montiel, Janinne 3 ; Montoya, Alejandra 3 ; Martinez-Juarez, Luis Alberto 3 ; Lomelín-Gascón, Julieta 3 ; Saucedo-Martínez, Rodrigo 3 ; Mújica-Rosales, Ricardo 3 ; Galicia-Hernández, Victoria 3 ; Morales-Juárez, Linda 3 ; Illescas-Correa, Lucía Marcela 4 ; Ruiz-Cabrera, Ixel Lorena 4 ; Díaz-Martínez, Daniel Alberto 5 ; Magos-Vázquez, Francisco Javier 5 ; Ávila, Edwin Oswaldo Vargas 5 ; Benitez-Herrera, Alejandro Efraín 6 ; Reyes-Gómez, Diana 6 ; Carmona-Ramos, María Concepción 6 ; Hernández-González, Laura 6 ; Romero-Islas, Oscar 6 ; Muñoz, Enrique Reyes 7 ; Tapia-Conyer, Roberto 8 

 University of Guadalajara, Health Sciences University Center, Guadalajara, Mexico (GRID:grid.412890.6) (ISNI:0000 0001 2158 0196); Carlos Slim Foundation, Mexico City, Mexico (GRID:grid.412890.6) 
 Carlos Slim Foundation, Mexico City, Mexico (GRID:grid.412890.6); National Institute of Public Health, Cuernavaca, Mexico (GRID:grid.415771.1) (ISNI:0000 0004 1773 4764) 
 Carlos Slim Foundation, Mexico City, Mexico (GRID:grid.415771.1) 
 Maternal and Childhood Research Center (CIMIGEN), Mexico City, Mexico (GRID:grid.415771.1) 
 Ministry of Health of the State of Guanajuato, Guanajuato, Mexico (GRID:grid.415771.1) 
 Ministry of Health of the State of Hidalgo, Fraccionamiento Puerta de Hierro, Pachuca, Hidalgo, Mexico (GRID:grid.415771.1) 
 National Institute of Perinatology, Department of Endocrinology, Mexico City, Mexico (GRID:grid.419218.7) (ISNI:0000 0004 1773 5302) 
 National Autonomous University of Mexico, School of Medicine, Mexico City, Mexico (GRID:grid.9486.3) (ISNI:0000 0001 2159 0001) 
Pages
6992
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2807213925
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.