Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rigid registration of 3D point clouds is the key technology in robotics and computer vision. Most commonly, the iterative closest point (ICP) and its variants are employed for this task. These methods assume that the closest point is the corresponding point and lead to sensitivity to the outlier and initial pose, while they have poor computational efficiency due to the closest point computation. Most implementations of the ICP algorithm attempt to deal with this issue by modifying correspondence or adding coarse registration. However, this leads to sacrificing the accuracy rate or adding the algorithm complexity. This paper proposes a hierarchical optimization approach that includes improved voxel filter and Multi-Scale Voxelized Generalized-ICP (MVGICP) for 3D point cloud registration. By combining traditional voxel sampling with point density, the outlier filtering and downsample are successfully realized. Through multi-scale iteration and avoiding closest point computation, MVGICP solves the local minimum problem and optimizes the operation efficiency. The experimental results demonstrate that the proposed algorithm is superior to the current algorithms in terms of outlier filtering and registration performance.

Details

Title
Hierarchical Optimization of 3D Point Cloud Registration
First page
6999
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2469476294
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.