It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Species within the genus Alcanivorax are well known hydrocarbon-degraders that propagate quickly in oil spills and natural oil seepage. They are also inhabitants of the deep-sea and have been found in several hydrothermal plumes. However, an in-depth analysis of deep-sea Alcanivorax is currently lacking. In this study, we used multiple culture-independent techniques to analyze the microbial community composition of hydrothermal plumes in the Northern Tonga arc and Northeastern Lau Basin focusing on the autecology of Alcanivorax. The hydrothermal vents feeding the plumes are hosted in an arc volcano (Niua), a rear-arc caldera (Niuatahi) and the Northeast Lau Spreading Centre (Maka). Fluorescence in situ hybridization revealed that Alcanivorax dominated the community at two sites (1210–1565 mbsl), reaching up to 48% relative abundance (3.5 × 104 cells/ml). Through 16S rRNA gene and metagenome analyses, we identified that this pattern was driven by two Alcanivorax species in the plumes of Niuatahi and Maka. Despite no indication for hydrocarbon presence in the plumes of these areas, a high expression of genes involved in hydrocarbon-degradation was observed. We hypothesize that the high abundance and gene expression of Alcanivorax is likely due to yet undiscovered hydrocarbon seepage from the seafloor, potentially resulting from recent volcanic activity in the area. Chain-length and complexity of hydrocarbons, and water depth could be driving niche partitioning in Alcanivorax.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Max Planck Institute for Marine Microbiology, Bremen, Germany (GRID:grid.419529.2) (ISNI:0000 0004 0491 3210)
2 MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany (GRID:grid.7704.4) (ISNI:0000 0001 2297 4381); University of Bremen, Geoscience Department, Bremen, Germany (GRID:grid.7704.4) (ISNI:0000 0001 2297 4381)
3 MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany (GRID:grid.7704.4) (ISNI:0000 0001 2297 4381); Institute of Environmental Physics, University of Bremen, Bremen, Germany (GRID:grid.7704.4) (ISNI:0000 0001 2297 4381)