Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Selenium nanoparticles (SeNPs) are all important for research because they exhibit a higher degree of absorption and lower toxicity than that of their organic and inorganic forms. At present, there are few reports on marine strains that can reduce Se(IV) to generate Se(0). In this study, a strain that reduces sodium selenite to SeNPs with high efficiency was screened from 40 marine strains. The SeNPs-S produced by the whole cells and SeNPs-E produced by the extracellular extract were characterized by FTIR, UV, Raman, XRD and SEM. Based on the results, the two kinds of SeNPs exhibited obvious differences in morphology, and their surfaces were capped with different biomacromolecules. Due to the difference in shape and surface coating, opposite results were obtained for the antibacterial activity of SeNPs-S and SeNPs-E against Gram-positive and Gram-negative bacteria. Both SeNPs-S and SeNPs-E exhibited no obvious cytotoxicity at concentrations up to 100 μg/mL, but SeNPs-E retained lower cytotoxicity when its concentration increased to 200 μg/mL. This is the first report on the detailed difference between the SeNPs produced by whole cells and cell extracts.

Details

Title
High-Efficiency Reducing Strain for Producing Selenium Nanoparticles Isolated from Marine Sediment
Author
Zhang, Liying  VIAFID ORCID Logo  ; Li, Zhuting; Zhang, Lei; Zhixiao Lei; Jin, Liming; Cao, Jijuan; Quan, Chunshan
First page
11953
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2724285169
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.