Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

By bonding the sub-wavelength-thick lithium niobate (LiNbO3) layer to high-phase-velocity (vp) substrates, such as Si, the shear-horizontal (SH) modes no longer couple with the bulk modes leaking into substrates. As the propagation loss is no longer the major concern for these types of nonleaky SH wave devices, the YX-LiNbO3 with a low rotation angle providing ultra-large coupling coefficient (keff2) can be used. In addition, by overlaying a high-velocity layer such as AlN on top of LiNbO3/Si, the vp of the SH wave can be significantly enhanced at a small cost of keff2. By a careful design of the stack, both the wide-band spurious (Lamb wave) and near-band spurious (Rayleigh wave) are suppressed successfully. This paper focuses on the design of layered substrate not only to optimize its resonance characteristics—series frequency (fs), quality factor (Q), keff2, and temperature coefficient of frequency (TCF)—but also for eliminating the out-of-band spurious responses. The optimized substrate design demonstrates the minimal propagation loss, high fs of 3 GHz, large keff2 of 14.4% and a spurious-free response at 0–6 GHz. These novel nonleaky SH wave devices can potentially enable the low loss and wideband processing functions, which is promising for the 5G/6G radio frequency (RF) communication systems.

Details

Title
High-Frequency and Spectrum-Clean Shear-Horizontal Acoustic Wave Resonators with AlN Overlay
Author
Wu, Zonglin  VIAFID ORCID Logo  ; Wu, Shuxian  VIAFID ORCID Logo  ; Bao, Feihong  VIAFID ORCID Logo  ; Zou, Jie  VIAFID ORCID Logo 
First page
1029
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694037934
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.