Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Understanding the evolutionary mechanisms of dynamic graphs is crucial since dynamic is a basic characteristic of real-world networks. The challenges of modeling dynamic graphs are as follows: (1) Real-world dynamics are frequently characterized by group effects, which essentially emerge from high-order interactions involving groups of entities. Therefore, the pairwise interactions revealed by the edges of graphs are insufficient to describe complex systems. (2) The graph data obtained from real systems are often noisy, and the spurious edges can interfere with the stability and efficiency of models. To address these issues, we propose a high-order topology-enhanced graph convolutional network for modeling dynamic graphs. The rationale behind it is that the symmetric substructure in a graph, called the maximal clique, can reflect group impacts from high-order interactions on the one hand, while not being readily disturbed by spurious links on the other hand. Then, we utilize two independent branches to model the distinct influence mechanisms of the two effects. Learnable parameters are used to tune the relative importance of the two effects during the process. We conduct link predictions on real-world datasets, including one social network and two citation networks. Results show that the average improvements of the high-order enhanced methods are 68%, 15%, and 280% over the corresponding backbones across datasets. The ablation study and perturbation analysis validate the effectiveness and robustness of the proposed method. Our research reveals that high-order structures provide new perspectives for studying the dynamics of graphs and highlight the necessity of employing higher-order topologies in the future.

Details

Title
High-Order Topology-Enhanced Graph Convolutional Networks for Dynamic Graphs
Author
Zhu, Jiawei 1 ; Li, Bo 2   VIAFID ORCID Logo  ; Zhang, Zhenshi 3 ; Zhao, Ling 1   VIAFID ORCID Logo  ; Li, Haifeng 1   VIAFID ORCID Logo 

 School of Geosciences and Info-Physics, Central South University, South Lushan Road, Changsha 410083, China 
 School of Architecture and Art, Central South University, Changsha 410083, China 
 Undergraduate School, National University of Defense Technology, Changsha 410073, China 
First page
2218
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728527522
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.