Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A high-speed, low-power divide-by-3/4 prescaler based on an extended true single-phase clock D-flip flop (E-TSPC DFF) is presented. We added two more transistors and a mode control signal to the conventional E-TSPC based divide-by-4 divider to achieve the function of the divide-by-3/4 dual modulus frequency divider. The designed divide-by-3/4 achieved higher speed and lower power operation with mode control compared with the conventional ones. The prescaler was comprised of sixteen transistors and integrates an inverter in the second DFF to provide output directly. The power consumption was minimized due to the reduced number of stages and transistors. In addition, the prescaler operating speed was also improved due to a reduced critical path. We compared the simulation results with conventional E-TSPC based divide-by-3/4 dividers in the same process, where the figure-of-merit (FoM) of the proposed divider was 17.4–75.5% better than conventional ones. We have also fabricated the prescaler in a 40 nm complementary metal oxide semiconductor (CMOS) process. The measured highest operating frequency was 9 GHz with 0.303 mW power consumption under 1.35 V power supply, which agrees with the simulation well. The measurement results demonstrate that the proposed divider achieves high-speed and low-power operation.

Details

Title
A High-Speed Low-Power Divide-by-3/4 Prescaler using E-TSPC Logic DFFs
Author
Shen, Tianchen 1 ; Liu, Jiabing 1 ; Song, Chunyi 1 ; Xu, Zhiwei 1   VIAFID ORCID Logo 

 Ocean Collage, Zhejiang University, Zhejiang 316021, China 
First page
589
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548422630
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.