Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recent advances in object detection play a key role in various industrial applications. However, a fully convolutional one-stage detector (FCOS), a conventional object detection method, has low detection accuracy given the calculation cost. Thus, in this study, we propose a half-inverted stage FCOS (HISFCOS) with improved detection accuracy at a computational cost comparable to FCOS based on the proposed half inverted stage (HIS) block. First, FCOS has low detection accuracy owing to low-level information loss. Therefore, an HIS block that minimizes feature loss by extracting spatial and channel information in parallel is proposed. Second, detection accuracy was improved by reconstructing the feature pyramid on the basis of the proposed block and improving the low-level information. Lastly, the improved detection head structure reduced the computational cost and amount compared to the conventional method. Through experiments, the proposed method defined the optimal HISFCOS parameters and evaluated several datasets for fair comparison. The HISFCOS was trained and evaluated using the PASCAL VOC and MSCOCO2017 datasets. Additionally, the average precision (AP) was used as an evaluation index to quantitatively evaluate detection performance. As a result of the experiment, the parameters were increased by 0.5 M compared to the conventional method, but the detection accuracy was improved by 3.0 AP and 1.5 AP in the PASCAL VOC and MSCOCO datasets, respectively. in addition, an ablation study was conducted, and the results for the proposed block and detection head were analyzed.

Details

Title
HISFCOS: Half-Inverted Stage Block for Efficient Object Detection Based on Deep Learning
Author
Hwang, Beomyeon 1   VIAFID ORCID Logo  ; Lee, Sanghun 2 ; Lee, Seunghyun 2   VIAFID ORCID Logo 

 Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Korea; [email protected] 
 Ingenium College of Liberal Arts, Kwangwoon University, Seoul 01897, Korea; [email protected] 
First page
117
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2313433X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652971923
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.