Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Gene regulation is the major mechanism that allows us to develop from a single cell to a fully formed adult body containing numerous organs and tissues, >200 cell types and a total of about 50 trillion cells. One of the ways our cells turn genes “on and off” is through the addition or removal of acetyl moieties (CH3CO) to proteins called histones. Our DNA is stabilized and compacted by being wrapped around groups of 8 histones to form nucleosomes. The addition of acetyl groups to histones loosens that wrapping, allowing the DNA to be more accessible for transcription, “turning on” genes of interest. This process is coordinated by enzymes called histone acetyltransferases (HATs, also called lysine acetyltransferases) and histone deacetylases (HDACs or lysine deacetylases). The precise coordination of these enzyme activities is essential to allow our stem cell populations to replenish themselves or differentiate along different pathways. Many of these enzymes have been described as being key regulators for hematopoietic, brain, and mesenchymal stem cells. This review describes how HATs and HDACs regulate stem cell processes and what is currently known regarding the roles of acetylation of histones in stem cell biology.

Abstract

Acetylation of histones is a key epigenetic modification involved in transcriptional regulation. The addition of acetyl groups to histone tails generally reduces histone-DNA interactions in the nucleosome leading to increased accessibility for transcription factors and core transcriptional machinery to bind their target sequences. There are approximately 30 histone acetyltransferases and their corresponding complexes, each of which affect the expression of a subset of genes. Because cell identity is determined by gene expression profile, it is unsurprising that the HATs responsible for inducing expression of these genes play a crucial role in determining cell fate. Here, we explore the role of HATs in the maintenance and differentiation of various stem cell types. Several HAT complexes have been characterized to play an important role in activating genes that allow stem cells to self-renew. Knockdown or loss of their activity leads to reduced expression and or differentiation while particular HATs drive differentiation towards specific cell fates. In this study we review functions of the HAT complexes active in pluripotent stem cells, hematopoietic stem cells, muscle satellite cells, mesenchymal stem cells, neural stem cells, and cancer stem cells.

Details

Title
Histone Acetyltransferases and Stem Cell Identity
Author
He, Ruicen 1 ; Dantas, Arthur 2 ; Riabowol, Karl 2   VIAFID ORCID Logo 

 Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; [email protected] (R.H.); [email protected] (A.D.); Department of Molecular Genetics, Temerty School of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada 
 Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; [email protected] (R.H.); [email protected] (A.D.); Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada 
First page
2407
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2532424139
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.