Full Text

Turn on search term navigation

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Histone deacetylases (HDACs) play a significant role in a plant’s development and response to various environmental stimuli by regulating the gene transcription. However, HDACs remain unidentified in cotton. In this study, a total of 29 HDACs were identified in allotetraploid Gossypium hirsutum, while 15 and 13 HDACs were identified in Gossypium arboretum and Gossypium raimondii, respectively. Gossypium HDACs were classified into three groups (reduced potassium dependency 3 (RPD3)/HDA1, HD2-like, and Sir2-like (SRT) based on their sequences, and Gossypium HDACs within each subgroup shared a similar gene structure, conserved catalytic domains and motifs. Further analysis revealed that Gossypium HDACs were under a strong purifying selection and were unevenly distributed on their chromosomes. Gene expression data revealed that G. hirsutum HDACs were differentially expressed in various vegetative and reproductive tissues, as well as at different developmental stages of cotton fiber. Furthermore, some G. hirsutum HDACs were co-localized with quantitative trait loci (QTLs) and single-nucleotide polymorphism (SNPs) of fiber-related traits, indicating their function in fiber-related traits. We also showed that G. hirsutum HDACs were differentially regulated in response to plant hormones (abscisic acid (ABA) and auxin), DNA damage agent (methyl methanesulfonate (MMS)), and abiotic stresses (cold, salt, heavy metals and drought), indicating the functional diversity and specification of HDACs in response to developmental and environmental cues. In brief, our results provide fundamental information regarding G. hirsutum HDACs and highlight their potential functions in cotton growth, fiber development and stress adaptations, which will be helpful for devising innovative strategies for the improvement of cotton fiber and stress tolerance.

Details

Title
Histone Deacetylase (HDAC) Gene Family in Allotetraploid Cotton and Its Diploid Progenitors: In Silico Identification, Molecular Characterization, and Gene Expression Analysis under Multiple Abiotic Stresses, DNA Damage and Phytohormone Treatments
Author
Imran, Muhammad 1   VIAFID ORCID Logo  ; Shafiq, Sarfraz 2 ; Naeem, Muhammad Kashif 3 ; Widemann, Emilie 4 ; Munir, Muhammad Zeeshan 5 ; Jensen, Kevin B 6 ; Wang, Richard R-C 6   VIAFID ORCID Logo 

 School of Life Sciences, Tsinghua University, Beijing 100084, China; [email protected]; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 
 School of Life Sciences, Tsinghua University, Beijing 100084, China; [email protected]; Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan 
 State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; [email protected] 
 Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON N6A5B8, Canada; [email protected] 
 Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; [email protected] 
 Forage & Range Research, United States Department of Agriculture, Agricultural Research Service, Logan, UT 84322, USA; [email protected] 
First page
321
Publication year
2020
Publication date
2020
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548635879
Copyright
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.