Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

There are billions of tea drinkers around the world. However, the optimized tea-brewing temperature and time conditions for achieving a higher concentration of antioxidants in tea drinks have not been thoroughly studied. Finding out the optimized brewing conditions can benefit tea drinkers significantly. In this work, we have studied ten antioxidants from seven different popular green, Oolong, black, and scented teas using hot water extraction followed by HPLC analysis. The antioxidant yield was evaluated at 25–100 °C with 5 to 720 min of brewing time. Our results show that the extraction efficiency was enhanced by increasing the water temperature and the highest yield of antioxidants was achieved at 100 °C. The antioxidant yield increased with prolonged brewing time. However, the degradation of antioxidants occurred when tea leaves were extracted for 120 to 720 min. Caffeine was found in all seven tea samples. At 100 °C, the caffein concentration in the tea extract ranged from 7.04 to 20.4 mg/g in Rizhao green tea. Longjing green tea contained the highest concentration of antioxidants (88 mg/g) in the 100 °C extract. Epigallocatechin and caffeine were the most abundant compounds found in all tea samples studied, ranging from 4.77 to 26.88 mg/g. The antioxidant yield was enhanced by increasing the extraction time to up to 60–120 min for all ten compounds studied.

Details

Title
Hot Water Extraction of Antioxidants from Tea Leaves—Optimization of Brewing Conditions for Preparing Antioxidant-Rich Tea Drinks
Author
Cheng, Yan 1   VIAFID ORCID Logo  ; Xue, Fumin 1 ; Yang, Yu 2 

 Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China 
 Department of Chemistry, East Carolina University, Greenville, NC 27858, USA 
First page
3030
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799685500
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.