Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Using Wi-Fi IEEE 802.11 standard, radio frequency waves are mainly used for communication on various devices such as mobile phones, laptops, and smart televisions. Apart from communication applications, the recent research in wireless technology has turned Wi-Fi into other exploration possibilities such as human activity recognition (HAR). HAR is a field of study that aims to predict motion and movement made by a person or even several people. There are numerous possibilities to use the Wi-Fi-based HAR solution for human-centric applications in intelligent surveillance, such as human fall detection in the health care sector or for elderly people nursing homes, smart homes for temperature control, a light control application, and motion detection applications. This paper’s focal point is to classify human activities such as EMPTY, LYING, SIT, SIT-DOWN, STAND, STAND-UP, WALK, and FALL with deep neural networks, such as long-term short memory (LSTM) and support vector machines (SVM). Special care was taken to address practical issues such as using available commodity hardware. Therefore, the open-source tool Nexmon was used for the channel state information (CSI) extraction on inexpensive hardware (Raspberry Pi 3B+, Pi 4B, and Asus RT-AC86U routers). We conducted three different types of experiments using different algorithms, which all demonstrated a similar accuracy in prediction for HAR with an accuracy between 97% and 99.7% (Raspberry Pi) and 96.2% and 100% (Asus RT-AC86U), for the best models, which is superior to previously published results. We also provide the acquired datasets and disclose details about the experimental setups.

Details

Title
Human Activity Recognition Using CSI Information with Nexmon
Author
Schäfer, Jörg  VIAFID ORCID Logo  ; Barrsiwal, Baldev Raj  VIAFID ORCID Logo  ; Kokhkharova, Muyassar  VIAFID ORCID Logo  ; Hannan Adil  VIAFID ORCID Logo  ; Liebehenschel, Jens  VIAFID ORCID Logo 
First page
8860
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2580955919
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.