Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Modern cities have imposed a fast-paced lifestyle where more drivers on the road suffer from fatigue and sleep deprivation. Consequently, road accidents have increased, becoming one of the leading causes of injuries and death among young adults and children. These accidents can be prevented if fatigue symptoms are diagnosed and detected sufficiently early. For this reason, we propose and compare two AlexNet CNN-based models to detect drivers’ fatigue behaviors, relying on head position and mouth movements as behavioral measures. We used two different approaches. The first approach is transfer learning, specifically, fine-tuning AlexNet, which allowed us to take advantage of what the model had already learned without developing it from scratch. The newly trained model was able to predict drivers’ drowsiness behaviors. The second approach is the use of AlexNet to extract features by training the top layers of the network. These features were reduced using non-negative matrix factorization (NMF) and classified with a support vector machine (SVM) classifier. The experiments showed that our proposed transfer learning model achieved an accuracy of 95.7%, while the feature extraction SVM-based model performed better, with an accuracy of 99.65%. Both models were trained on a simulated NTHU Driver Drowsiness Detection dataset.

Details

Title
A Hybrid Driver Fatigue and Distraction Detection Model Using AlexNet Based on Facial Features
Author
Anber, Salma 1   VIAFID ORCID Logo  ; Alsaggaf, Wafaa 1   VIAFID ORCID Logo  ; Shalash, Wafaa 2   VIAFID ORCID Logo 

 Information Technology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia; [email protected] 
 Computer Science Department, Faculty of Computers and Artificial Intelligence, Benha University, Benha 13518, Egypt; [email protected] 
First page
285
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2621278240
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.