Full Text

Turn on search term navigation

© 2021 Stohy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, we proposed a hybrid pointer network (HPN), an end-to-end deep reinforcement learning architecture is provided to tackle the travelling salesman problem (TSP). HPN builds upon graph pointer networks, an extension of pointer networks with an additional graph embedding layer. HPN combines the graph embedding layer with the transformer’s encoder to produce multiple embeddings for the feature context. We conducted extensive experimental work to compare HPN and Graph pointer network (GPN). For the sack of fairness, we used the same setting as proposed in GPN paper. The experimental results show that our network significantly outperforms the original graph pointer network for small and large-scale problems. For example, it reduced the cost for travelling salesman problems with 50 cities/nodes (TSP50) from 5.959 to 5.706 without utilizing 2opt. Moreover, we solved benchmark instances of variable sizes using HPN and GPN. The cost of the solutions and the testing times are compared using Linear mixed effect models. We found that our model yields statistically significant better solutions in terms of the total trip cost. We make our data, models, and code publicly available https://github.com/AhmedStohy/Hybrid-Pointer-Networks.

Details

Title
Hybrid pointer networks for traveling salesman problems optimization
Author
Stohy, Ahmed; Heba-Tullah Abdelhakam; Sayed, Ali; Elhenawy, Mohammed; Hassan, Abdallah A; Mahmoud Masoud; Glaser, Sebastien; Rakotonirainy, Andry
First page
e0260995
Section
Research Article
Publication year
2021
Publication date
Dec 2021
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2610046714
Copyright
© 2021 Stohy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.