Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

β-Hydroxy sulfones are important in organic synthesis. The simplest method of β-hydroxy sulfones synthesis is the hydrogenation of β-keto sulfones. Herein, we report the reducing properties of alkyl aluminum compounds R3Al (R = Et, i-Bu, n-Bu, t-Bu and n-Hex); i-Bu2AlH; Et2AlCl and EtAlCl2 in the hydrogenation of β-keto sulfones. The compounds i-Bu2AlH, i-Bu3Al and Et3Al are the at best reducing agents of β-keto sulfones to β-hydroxy sulfones. In reactions of β-keto sulfones with aluminum trialkyls, hydroalumination products with β-hydroxy sulfone ligands [R2AlOC(C6H5)CH2S(O)2(p-R1C6H4]n [where n = 1,2; 2aa: R = i-Bu, R1 = CH3; 2ab: R = i-Bu, R1 = Cl; 2ba: R = Et, R1 = CH3; 2bb: R = Et, R1 = Cl] and {[Et2AlOC(C6H5)CH2S(O)2(p-ClC6H4]∙Et3Al}n 3bb were obtained. These complexes in the solid state have a dimeric structure, while in solutions, they appear as equilibrium monomer–dimer mixtures. The hydrolysis of both the isolated 2aa, 2ab, 2ba, 2bb and 3bb and the postreaction mixtures quantitatively leads to pure racemic β-hydroxy sulfones. Hydroalumination reaction of β-keto sulfones with alkyl aluminum compounds and subsequent hydrolysis of the complexes is a simple and very efficient method of β-hydroxy sulfones synthesis.

Details

Title
Hydrogenation of β-Keto Sulfones to β-Hydroxy Sulfones with Alkyl Aluminum Compounds: Structure of Intermediate Hydroalumination Products
Author
Kotecki, Michał 1 ; Ochal, Zbigniew 1 ; Socha, Paweł 2   VIAFID ORCID Logo  ; Szejko, Vadim 1   VIAFID ORCID Logo  ; Dobrzycki, Łukasz 2 ; Stypik, Mariola 1 ; Ziemkowska, Wanda 1   VIAFID ORCID Logo 

 Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; [email protected] (M.K.); [email protected] (Z.O.); [email protected] (V.S.); [email protected] (M.S.) 
 Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; [email protected] (P.S.); [email protected] (Ł.D.) 
First page
2357
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649020016
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.