It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
RNA editing is a post-transcriptional process that alters RNA sequence in a site-specific manner. A-to-I editing is the most abundant as well as the most well-studied type of RNA editing. About 0.5% of A-to-I editing sites were located in the coding regions. Despite of thousands of identified A-to-I nonsynonymous editing sites, the function of nonsynonymous editing was poorly studied. Here, we found that the nonsynonymous editing was significantly enriched in the ubiquitination site, compared to the synonymous editing. This enrichment was also in a modification type dependent manner, since it was not significantly enriched in other modification types. This observation was consistent with previous study that the codons for lysine (AAG and AAA) were enriched in the preferred deamination site for RNA editing. The peptides from proteomic data in CPTAC supported that mRNAs harboring edited ubiquitination sites can be translated into protein in cells. We identified the editing sites on ubiquitination site were significantly differential edited between tumor and para-tumor samples as well as among different subtypes in TCGA datasets and also correlated with clinical outcome, especially for the nonsynonymous editing sites on GSTM5, WDR1, SSR4 and PSMC4. Finally, the enrichment analysis revealed that the function of these above genes was specifically enriched in the immune response pathway. Our study shed a light on understanding the functions of nonsynonymous editing in tumorigenesis and provided nonsynonymous editing targets for potential cancer diagnosis and therapy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Capital Medical University, Department of Obstetrics and Gynecology, Beijing Tiantan Hospital, Bejing, China (GRID:grid.24696.3f) (ISNI:0000 0004 0369 153X)
2 Chinese Academy of Sciences, CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309)
3 Fudan University, Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai Key Laboratory of Medical Epigenetics; The International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College, Shanghai, China (GRID:grid.8547.e) (ISNI:0000 0001 0125 2443)