Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Production space, living space, and ecological space (PLES) increasingly restrict and influence each other, and the urban PLES conflict significantly affects the sustainable development of a city. This study extracts multi-dimensional features from high-resolution remote sensing images, building vectors, points of interest (POI), and nighttime lighting data, and applies them to urban PLES feature recognition, dividing Ningbo into an agricultural production space, industrial and commercial production space, public living space, resident living space and ecological space. The specific research work was as follows: first, a convolutional neural network (CNN) was used to extract high-rise scene information from high-resolution remote sensing images; at the same time, through the geostatistical method, the building vector features, POI features, and night light features were extracted to express the economic and social characteristics of a city. Then, we used the nearest neighbor algorithm, decision-making tree algorithm, and random forest algorithm to train individual and combined features. Finally, random forest, which had the best training effect, was selected as the classifier in the fusion stage; as a result, the prediction accuracy rate reached 90.79%. The experimental results showed that the recognition model, based on multisource data and machine learning, had a good classification effect. Finally, we analyzed the current situation of the spatial distribution of PLES in Ningbo.

Details

Title
Identification and Classification of Urban PLES Spatial Functions Based on Multisource Data and Machine Learning
Author
Fu, Jingying 1   VIAFID ORCID Logo  ; Bu, Ziqiang 1 ; Jiang, Dong 2   VIAFID ORCID Logo  ; Lin, Gang 1   VIAFID ORCID Logo 

 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 
 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources, Beijing 100101, China 
First page
1824
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728496652
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.