Full Text

Turn on search term navigation

© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chlamydospores are specific structures that are of great significance to the commercialization of fungal biopesticides. To explore the genes associated with chlamydospore formation, a biocontrol fungus Clonostachys rosea 67‐1 that is capable of producing resistant spores under particular conditions was investigated by transcriptome sequencing and analysis. A total of 549,661,174 clean reads were obtained, and a series of differentially expressed genes potentially involved in fungal chlamydospore formation were identified. At 36 hr, 67 and 117 genes were up‐ and downregulated in C. rosea during chlamydospore production, compared with the control for conidiation, and 53 and 24 genes were up‐ and downregulated at 72 hr. GO classification suggested that the differentially expressed genes were related to cellular component, biological process, and molecular function categories. A total of 188 metabolism pathways were linked to chlamydospore production by KEGG analysis. Sixteen differentially expressed genes were verified by reverse transcription quantitative PCR, and the expression profiles were consistent with the transcriptome data. To the best of our knowledge, it is the first report on the genes associated with chlamydospore formation in C. rosea. The results provide insight into the molecular mechanisms underlying C. rosea sporulation, which will assist the development of fungal biocontrol agents.

Details

Title
Identification of genes related to chlamydospore formation in Clonostachys rosea 67‐1
Author
Zhan‐Bin Sun 1 ; Zhang, Jun 1 ; Man‐Hong Sun 1   VIAFID ORCID Logo  ; Shi‐Dong Li 1 

 Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China 
Section
ORIGINAL RESEARCH
Publication year
2019
Publication date
Jan 2019
Publisher
John Wiley & Sons, Inc.
e-ISSN
20458827
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2169131487
Copyright
© 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.