Full Text

Turn on search term navigation

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Wheat, a major worldwide staple food crop, is relatively sensitive to a changing environment, including high temperature. The comprehensive mechanism of heat stress response at the molecular level and exploitation of candidate tolerant genes are far from enough. Using transcriptome data, we analyzed the gene expression profiles of wheat under heat stress. A total of 1705 and 17 commonly differential expressed genes (DEGs) were identified in wheat grain and flag leaf, respectively, through transcriptome analysis. Gene Ontology (GO) and pathway enrichment were also applied to illustrate the functions and metabolic pathways of DEGs involved in thermotolerance of wheat grain and flag leaf. Furthermore, our data suggest that there may be a more complex molecular mechanism or tighter regulatory network in flag leaf than in grain under heat stress over time, as less commonly DEGs, more discrete expression profiles of genes (principle component analysis) and less similar pathway response were observed in flag leaf. In addition, we found that transcriptional regulation of zeatin, brassinosteroid and flavonoid biosynthesis pathways may play an important role in wheat’s heat tolerance. The expression changes of some genes were validated using quantitative real-time polymerase chain reaction and three potential genes involved in the flavonoid biosynthesis process were identified.

Details

Title
Identification of Potential Genes Responsible for Thermotolerance in Wheat under High Temperature Stress
Author
Su, Peipei 1 ; Cai, Jiang 2 ; Qin, Hao 2 ; Hu, Rui 1 ; Feng, Jialu 1 ; Chang, Junli 1 ; Yang, Guangxiao 1 ; He, Guangyuan 1 

 The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China 
 Wuhan Igenomics Biotech Inc., Wuhan Oversea Scholar Business Park, East Lake High-Tech Development Zone, 73 Guangguchuangye Street, Wuhan 430075, China 
First page
174
Publication year
2019
Publication date
2019
Publisher
MDPI AG
e-ISSN
20734425
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2548516323
Copyright
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.