Abstract

Protein S-nitrosylation (SNO) is a typical reversible, redox-dependent and post-translational modification that involves covalent modification of cysteine residues with nitric oxide (NO) for the thiol group. Numerous experiments have shown that SNO plays a major role in cell function and pathophysiology. In order to rapidly analysis the big sets of data, the computing methods for identifying the SNO sites are being considered as necessary auxiliary tools. In this study, multiple features including Parallel correlation pseudo amino acid composition (PC-PseAAC), Basic kmer1 (kmer1), Basic kmer2 (kmer2), General parallel correlation pseudo amino acid composition (PC-PseAAC_G), Adapted Normal distribution Bi-Profile Bayes (ANBPB), Double Bi-Profile Bayes (DBPB), Bi-Profile Bayes (BPB), Incorporating Amino Acid Pairwise (IAAPair) and Position-specific Tri-Amino Acid Propensity(PSTAAP) were employed to extract the sequence information. To remove information redundancy, information gain (IG) was applied to evaluate the importance of amino acids, which is the information entropy of class after subtracting the conditional entropy for the given amino acid. The prediction performance of the SNO sites was found to be best by using the cross-validation and independent tests. In addition, we also calculated four commonly used performance measurements, i.e. Sensitivity (Sn), Specificity (Sp), Accuracy (Acc), and the Matthew’s Correlation Coefficient (MCC). For the training dataset, the overall Acc was 83.11%, the MCC was 0.6617. For an independent test dataset, Acc was 73.17%, and MCC was 0.3788. The results indicate that our method is likely to complement the existing prediction methods and is a useful tool for effective identification of the SNO sites.

Details

Title
Identification of S-nitrosylation sites based on multiple features combination
Author
Li Taoying 1   VIAFID ORCID Logo  ; Song Runyu 1 ; Yin Qian 1 ; Gao Mingyue 1 ; Chen, Yan 1 

 Dalian Maritime University, Department of Maritime Economics and Management, Dalian, China (GRID:grid.440686.8) 
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2187021422
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.