It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Protein S-nitrosylation (SNO) is a typical reversible, redox-dependent and post-translational modification that involves covalent modification of cysteine residues with nitric oxide (NO) for the thiol group. Numerous experiments have shown that SNO plays a major role in cell function and pathophysiology. In order to rapidly analysis the big sets of data, the computing methods for identifying the SNO sites are being considered as necessary auxiliary tools. In this study, multiple features including Parallel correlation pseudo amino acid composition (PC-PseAAC), Basic kmer1 (kmer1), Basic kmer2 (kmer2), General parallel correlation pseudo amino acid composition (PC-PseAAC_G), Adapted Normal distribution Bi-Profile Bayes (ANBPB), Double Bi-Profile Bayes (DBPB), Bi-Profile Bayes (BPB), Incorporating Amino Acid Pairwise (IAAPair) and Position-specific Tri-Amino Acid Propensity(PSTAAP) were employed to extract the sequence information. To remove information redundancy, information gain (IG) was applied to evaluate the importance of amino acids, which is the information entropy of class after subtracting the conditional entropy for the given amino acid. The prediction performance of the SNO sites was found to be best by using the cross-validation and independent tests. In addition, we also calculated four commonly used performance measurements, i.e. Sensitivity (Sn), Specificity (Sp), Accuracy (Acc), and the Matthew’s Correlation Coefficient (MCC). For the training dataset, the overall Acc was 83.11%, the MCC was 0.6617. For an independent test dataset, Acc was 73.17%, and MCC was 0.3788. The results indicate that our method is likely to complement the existing prediction methods and is a useful tool for effective identification of the SNO sites.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer