It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The present study tests the accuracy of four models in estimating the hourly air temperatures in different agroecological regions of the country during two major crop seasons, kharif and rabi, by taking daily maximum and minimum temperatures as input. These methods that are being used in different crop growth simulation models were selected from the literature. To adjust the biases of estimated hourly temperature, three bias correction methods (Linear regression, Linear scaling and Quantile mapping) were used. When compared with the observed data, the estimated hourly temperature, after bias correction, is reasonably close to the observed during both kharif and rabi seasons. The bias-corrected Soygro model exhibited its good performance at 14 locations, followed by the WAVE model and Temperature models at 8 and 6 locations, respectively during the kharif season. In the case of rabi season, the bias-corrected Temperature model appears to be accurate at more locations (21), followed by WAVE and Soygro models at 4 and 2 locations, respectively. The pooled data analysis showed the least error between estimated (uncorrected and bias-corrected) and observed hourly temperature from 04 to 08 h during kharif season while it was 03 to 08 h during the rabi season. The results of the present study indicated that Soygro and Temperature models estimated hourly temperature with better accuracy at a majority of the locations situated in the agroecological regions representing different climates and soil types. Though the WAVE model worked well at some of the locations, estimation by the PL model was not up to the mark in both kharif and rabi seasons. Hence, Soygro and Temperature models can be used to estimate hourly temperature data during both kharif and rabi seasons, after the bias correction by the Linear Regression method. We believe that the application of the study would facilitate the usage of hourly temperature data instead of daily data which in turn improves the precision in predicting phenological events and bud dormancy breaks, chilling hour requirement etc.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, India (GRID:grid.466523.0) (ISNI:0000 0000 9141 0822)