Full Text

Turn on search term navigation

© 2016 Willebrand, Voehringer. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Eosinophils are major effector cells during allergic responses and helminth infections. Recent studies further highlight eosinophils as important players in many other biological processes. Therefore it is important to understand how these cells can be modulated in terms of survival and effector function. In the present study we investigated how eosinophils respond to the alarmin IL-33. We show that IL-33 promotes eosinophil survival in a ST2- and MyD88-dependent manner. IL-33-mediated protection from apoptosis was dependent on autocrine GM-CSF release. In addition, GM-CSF increased the IL-33-induced secretion of IL-4 and IL-13 from eosinophils. Unexpectedly, this effect was further enhanced by cross-linking of Siglec-F, a proposed inhibitory and apopotosis-inducing receptor on eosinophils. Co-culture experiments with eosinophils and macrophages revealed that the IL-33-induced release of IL-4 and IL-13 from eosinophils was required for differentiation of alternatively activated macrophages (AAMs). The differentiation of AAMs could be further increased in the presence of GM-CSF. These results indicate that cross-talk between Siglec-F and the receptors for IL-33, LPS and GM-CSF plays an important role for efficient secretion of IL-4 and IL-13. Deciphering the molecular details of this cross-talk could lead to the development of new therapeutic option to treat eosinophil-associated diseases.

Details

Title
IL-33-Induced Cytokine Secretion and Survival of Mouse Eosinophils Is Promoted by Autocrine GM-CSF
Author
Willebrand, Ralf; Voehringer, David
First page
e0163751
Section
Research Article
Publication year
2016
Publication date
Sep 2016
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1825255750
Copyright
© 2016 Willebrand, Voehringer. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.