Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With continuous developments in deep learning, image semantic segmentation technology has also undergone great advancements and been widely used in many fields with higher segmentation accuracy. This paper proposes an image semantic segmentation algorithm based on a deep neural network. Based on the Mask Scoring R-CNN, this algorithm uses a symmetrical feature pyramid network and adds a multiple-threshold architecture to improve the sample screening precision. We employ a probability model to optimize the mask branch of the model further to improve the algorithm accuracy for the segmentation of image edges. In addition, we adjust the loss function so that the experimental effect can be optimized. The experiments reveal that the algorithm improves the results.

Details

Title
Image Semantic Segmentation Use Multiple-Threshold Probabilistic R-CNN with Feature Fusion
First page
207
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2484683150
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.