Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The developments in the fields of industrial Internet of Things (IIoT) and big data technologies have made it possible to collect a lot of meaningful industrial process and quality-based data. The gathered data are analyzed using contemporary statistical methods and machine learning techniques. Then, the extracted knowledge can be used for predictive maintenance or prognostic health management. However, it is difficult to gather complete data due to several issues in IIoT, such as devices breaking down, running out of battery, or undergoing scheduled maintenance. Data with missing values are often ignored, as they may contain insufficient information from which to draw conclusions. In order to overcome these issues, we propose a novel, effective missing data handling mechanism for the concepts of symmetry principles. While other existing methods only attempt to estimate missing parts, the proposed method generates a whole set of data set using Gaussian process regression and a generative adversarial network. In order to prove the effectiveness of the proposed framework, we examine a real-world, industrial case involving an air pressure system (APS), where we use the proposed method to make quality predictions and compare the results with existing state-of-the-art estimation methods.

Details

Title
An Imbalanced Data Handling Framework for Industrial Big Data Using a Gaussian Process Regression-Based Generative Adversarial Network
Author
Oh, Eunseo  VIAFID ORCID Logo  ; Lee, Hyunsoo  VIAFID ORCID Logo 
First page
669
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2395163096
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.