Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Pathogens and their toxins can cause various diseases of different severity. Some of them may be fatal, and therefore early diagnosis and suitable treatment is essential. There are numerous available methods used for their rapid screening. Conventional laboratory-based techniques such as culturing, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are dominant. However, culturing still remains the “gold standard” for their identification. These methods have many advantages, including high sensitivity and selectivity, but also numerous limitations, such as long experiment-time, costly instrumentation, and the need for well-qualified personnel to operate the equipment. All these existing limitations are the reasons for the continuous search for a new solutions in the field of bacteria identification. For years, research has been focusing on the use of immunosensors in various types of toxin- and pathogen-detection. Compared to the conventional methods, immunosensors do not require well-trained personnel. What is more, immunosensors are quick, highly selective and sensitive, and possess the potential to significantly improve the pathogen and toxin diagnostic-processes. There is a very important potential use for them in various transport systems, where the risk of contamination by bioagents is very high. In this paper, the advances in the field of immunosensor usage in pathogenic microorganism- and toxin-detection, are described.

Details

Title
Immunosensors—The Future of Pathogen Real-Time Detection
Author
Janik-Karpinska, Edyta 1   VIAFID ORCID Logo  ; Ceremuga, Michal 2 ; Niemcewicz, Marcin 1 ; Podogrocki, Marcin 1 ; Maksymilian Stela 1 ; Cichon, Natalia 1   VIAFID ORCID Logo  ; Bijak, Michal 1   VIAFID ORCID Logo 

 Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland 
 Military Institute of Armored and Automotive Technology, Okuniewska 1, 05-070 Sulejowek, Poland 
First page
9757
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756782175
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.