Full Text

Turn on search term navigation

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, models were used for the first time to investigate the fate and transport of rare earth elements (REE) in the presence of hydrous manganese and ferric oxides in groundwaters from the coastal Bohai Bay (China). Results showed that REE sorption is strongly dependent on pH, as well as hydrous manganese and ferric oxide content. Higher proportions of REE were sorbed by hydrous manganese oxide as compared to hydrous ferric oxides, for example in the presence of neodymium. In this case, a mean 28% of this element was sorbed by hydrous manganese oxide, whereas an average 7% sorption was observed with hydrous ferric oxides. A contrasting REE sorption behavior was observed with hydrous manganese and ferric oxide for all investigated groundwaters. Specifically, REE bound to hydrous manganese oxides showed decreasing sorption patterns with increasing atomic number. The opposite trend was observed in the presence of hydrous ferric oxides. In addition, these results suggested that light REE (from La to Sm) rather than heavy REE (from Eu to Lu) are preferentially scavenged by hydrous manganese oxide. However, the heavy REE showed a greater affinity for hydrous ferric oxides compared to light REE. Therefore, both hydrous manganese and ferric oxide are important scavengers of REE. This study shows the implication of hydrous manganese and ferric oxide sorption for the sink of REE in groundwater.

Details

Title
Impact of Hydrous Manganese and Ferric Oxides on the Behavior of Aqueous Rare Earth Elements (REE): Evidence from a Modeling Approach and Implication for the Sink of REE
Author
Liu, Haiyan 1 ; Pourret, Olivier 2   VIAFID ORCID Logo  ; Guo, Huaming 3 ; Martinez, Raul E 4 ; Zouhri, Lahcen 2 

 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; Guangdong Provincial Academy of Environmental Science, Guangzhou 510000, China; UniLaSalle, AGHYLE, 60026 Beauvais CEDEX, France 
 UniLaSalle, AGHYLE, 60026 Beauvais CEDEX, France 
 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China 
 Institut für Geo- und Ulweltnaturwissenschaften, Albert-Ludwigs Universität, 79104 Freiburg, Germany; Max-Planck-Research Group Paleobiogeochemistry, University of Bremen, 28359 Bremen, Germany 
First page
2837
Publication year
2018
Publication date
2018
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2582830037
Copyright
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.