It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Effect of an optimized multi-step heat treatment routine on conventional (machining from wrought bar stock) and alternate manufacturing routes (hot forging and cold rotary forging) for producing flat cylindrical-shaped machine drive components from 18CrNiMo7-6 steel was investigated. The microstructure and mechanical properties of the final component manufactured using these three different routes were analyzed using optical microscopy, electron backscatter diffraction (EBSD), hardness testing, electro-thermal mechanical testing (ETMT), and rotary bending fatigue testing (RBFT) before and after implementing the multi-step heat treatment. It was found that the multi-step heat treatment transformed the as-received microstructure into the tempered martensitic microstructure, improving hardness, tensile, and fatigue properties. The heat treatment produced desired properties for the components manufactured by all three different routes. However the cold rotary forging, which is the most material utilizing route over the others, benefited the most from the optimized heat treatment.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 University of Strathclyde, Advanced Forming Research Centre, Glasgow, UK (GRID:grid.11984.35) (ISNI:0000000121138138)
2 University of Strathclyde, Advanced Forming Research Centre, Glasgow, UK (GRID:grid.11984.35) (ISNI:0000000121138138); University of Strathclyde, Advanced Materials Research Laboratory, Glasgow, UK (GRID:grid.11984.35) (ISNI:0000000121138138)