Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cyanidin-3-O-glucoside (C3G) is a widespread anthocyanin derivative, which has been reported in vitro to exert potent antioxidant, antiglycation and α-glucosidase inhibition effects. Nevertheless, the physiological relevance of such properties remains uncertain considering its significant instability in gastrointestinal conditions. A simulated digestion procedure was thus instigated to assess the influence of gastric and intestinal media on its chemical integrity and biological activities. HPLC analyses of digested C3G samples confirmed the striking impact of intestinal conditions, as attested by a decomposition ratio of 70%. In contrast, with recovery rates of around 90%, antiglycation, as well as DPPH and ABTS scavenging assays, uniformly revealed a noteworthy persistence of its antiglycoxidant capacities. Remarkably, a prominent increase of its α-glucosidase inhibition activity was even observed after the intestinal phase, suggesting that classical in vitro evaluations might underestimate C3G antidiabetic potential. Consequently, the present data provide novel and specific insights on C3G’s digestive fate, suggesting that the gastrointestinal tract does not profoundly affect its positive action on oxidative and carbonyl stresses. More specifically, it also tends to support its regulating effects on postprandial hyperglycemia and its potential usefulness for diabetes management.

Details

Title
Impact of Simulated Gastrointestinal Conditions on Antiglycoxidant and α-Glucosidase Inhibition Capacities of Cyanidin-3-O-Glucoside
Author
Fraisse, Didier; Bred, Alexis; Felgines, Catherine; Senejoux, François
First page
1670
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20763921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2601989801
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.