Full Text

Turn on search term navigation

Copyright © 2016 Diandong Ren. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study assesses the impact assimilating the scatterometer near-surface wind observations and total precipitable water from the SSMI, into WRF on genesis and track forecasting of four tropical cyclones (TCs). These TCs are selected to be representative of different intensity categories and basins. Impact is via a series of data denial experiments that systematically exclude the remote sensed information. Compared with the control case, in which only the final analysis atmospheric variables are used to initialize and provide the lateral boundary conditions, the data assimilation runs performed consistently better, but with very different skill levels for the different TCs. Eliassen-Palm flux analyses are employed. It is confirmed that if a polar orbital satellite footprint passes over the TC's critical genesis region, the forecast will profit most from assimilating the remotely sensed information. If the critical genesis region lies within an interorbital gap then, regardless of how strong the TC later becomes (e.g., Katrina 2005), the improvement from assimilating near-surface winds and total precipitable water in the model prediction is severely limited. This underpins the need for a synergy of data from different scatterometers/radiometers. Other approaches are suggested to improve the accuracy in the prediction of TC genesis and tracks.

Details

Title
The Impacts of Satellite Remotely Sensed Winds and Total Precipitable Vapour in WRF Tropical Cyclone Track Forecasts
Author
Ren, Diandong
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
16879309
e-ISSN
16879317
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1846088595
Copyright
Copyright © 2016 Diandong Ren. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.