It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Parkinson’s Disease (PD) is an advanced neurodegenerative illness. It is about 90% of PD sufferer shows speech disorders in the initial stages. Hence, in this research, speech features were applied to classify this illness. The most famous speech features used in PD research are jitter, shimmer, fundamental frequency parameters, harmonicity parameters, Recurrence Period Density Entropy (RPDE), Detrended Fluctuation Analysis (DFA), and Pitch Period Entropy (PPE).Those features were then called as baseline features used in this research. In this research, the XGBoost algorithm was used for the classification of PD. Initially, the whole baseline features were used in the XGBoost algorithm and obtained an accuracy score of the model 84.80%. For improving the model, feature selection was performed by plotting feature importance, which causes features of locShimmer (Fscore = 3) was excluded from the model. After feature selection was performed, the accuracy score of the model has increased to 85.60 %. We tried to improve the model using for second features selection, by excluding features with F-score values less than 20. However, after performed this feature selection, the accuracy of the model was decreased to 84.40 %. Thus, the model used is the model with an accuracy of 85.60%.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Informatics, University of Muhammadiyah Jember, Jember, Indonesia
2 Primary Teacher Education, University of Ahmad Dahlan, Yogyakarta, Indonesia