Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Because of the massive work and high cost of milling experiments, finite element analysis technology (FEA) was used to analyze the milling process of ADC12 aluminum alloy. An improved Johnson–Cook (J–C) constitutive equation was fitted by a series of dynamic impact tests in different strain rates and temperatures. It found that the flow stress gradually increases as the strain rate rises, but it decreases as the test temperature rises. Compared with the J–C constitutive model, the predicted flow stress by the improved J–C constitutive model was closer to the experimental results when the strain rate was larger than 8000 s−1 and the temperature was higher than 300 °C. A two-dimensional cycloidal cutting simulation model was constructed based on the two J–C constitutive equations which was validated by milling experiments at different cutting speeds. The simulation results based on the improved J–C constitutive equation were closer to the experimental results and showed the cutting force first increased and then decreased, with cutting speed increasing, reaching a maximum at 600 m/min.

Details

Title
An Improved Johnson–Cook Constitutive Model and Its Experiment Validation on Cutting Force of ADC12 Aluminum Alloy During High-Speed Milling
Author
Meng, Xinxin  VIAFID ORCID Logo  ; Lin, Youxi; Mi, Shaowei
First page
1038
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2431027406
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.