Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Urban built-up areas, where urbanization process takes place, represent well-developed areas in a city. The accurate and timely extraction of urban built-up areas has a fundamental role in the comprehension and management of urbanization dynamics. Urban built-up areas are not only a reflection of urban expansion but also the main space carrier of social activities. Recent research has attempted to integrate the social factor to improve the extraction accuracy. However, the existing extraction methods based on nighttime light data only focus on the integration of a single factor, such as points of interest or road networks, which leads to weak constraint and low accuracy. To address this issue, a new index-based methodology for urban built-up area extraction that fuses nighttime light data with multisource big data is proposed in this paper. The proposed index, while being conceptually simple and computationally inexpensive, can extract the built-up areas efficiently. First, a new index-based methodology, which integrates nighttime light data with points-of-interest, road networks, and the enhanced vegetation index, was constructed. Then, based on the proposed new index and the reference urban built-up data area, urban built-up area extraction was performed based on the dynamic threshold dichotomy method. Finally, the proposed method was validated based on actual data in a city. The experimental results indicate that the proposed index has high accuracy (recall, precision and F1 score) and applicability for urban built-up area boundary extraction. Moreover, this paper discussed different existing urban area extraction methods, and provides an insight into the appropriate approaches selection for further urban built-up area extraction in cities with different conditions.

Details

Title
An Improved Method for Urban Built-Up Area Extraction Supported by Multi-Source Data
Author
Li, Chengming 1 ; Wang, Xiaoyan 2 ; Wu, Zheng 2 ; Dai, Zhaoxin 2 ; Yin, Jie 2 ; Zhang, Chengcheng 2 

 Chinese Academy of Surveying and Mapping, Beijing 100830, China; [email protected] 
 Department of Geomatics, Xi’an University of Science and Technology, Xi’an 710600, China; [email protected] (X.W.); [email protected] (Z.W.); [email protected] (Z.D.); [email protected] (J.Y.) 
First page
5042
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2530164323
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.