Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The weighted K-nearest neighbor (WKNN) algorithm is the most commonly used algorithm for indoor localization. Traditional WKNN algorithms adopt received signal strength (RSS) spatial distance (usually Euclidean distance and Manhattan distance) to select reference points (RPs) for position determination. It may lead to inaccurate position estimation because the relationship of received signal strength and distance is exponential. To improve the position accuracy, this paper proposes an improved weighted K-nearest neighbor algorithm. The spatial distance and physical distance of RSS are used for RP selection, and a fusion weighted algorithm based on these two distances is used for position calculation. The experimental results demonstrate that the proposed algorithm outperforms traditional algorithms, such as K-nearest neighbor (KNN), Euclidean distance-based WKNN (E-WKNN), and physical distance-based WKNN (P-WKNN). Compared with the KNN, E-WKNN, and P-WKNN algorithms, the positioning accuracy of the proposed method is improved by about 29.4%, 23.5%, and 20.7%, respectively. Compared with some recently improved WKNN algorithms, our proposed algorithm can also obtain a better positioning performance.

Details

Title
An Improved Weighted K-Nearest Neighbor Algorithm for Indoor Localization
First page
2117
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2470488285
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.