Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The monolayer Janus MoSSe is considered to be a promising catalytic material due to its unique asymmetric structure. In order to improve its catalytic performance for hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs), many attempts have been made. In this work, a series of transition metal (TM) atoms were anchored on the Janus MoSSe surface to screen effective TM single-atom catalysts for HERs and OERs through density functional theory (DFT) calculations. Fe@MoSSe presents excellent HERs performance and Ni@MoSSe presents excellent catalytic performance for OERs with extremely low over-potential of 0.32 V. The enhanced activity is attributed to the modest energy level of the d band center of the transition metal atom, and the transition metal atom improves the conductivity of the original MoSSe and offers unoccupied states near the Fermi level. At the same time, the anchoring of transition metal atoms redistributes the charge in the MoSSe system, which effectively regulates the electronic structure of the material itself. The strain calculation shows that the activity of the catalyst can be improved by reasonably adjusting the value of the applied strain.

Details

Title
Improving Catalytic Activity of “Janus” MoSSe Based on Surface Interface Regulation
Author
Wang, Mingqian 1 ; Wang, Xin 2 ; Zheng, Ming 2 ; Zhou, Xin 2 

 Public Teaching Department, Heilongjiang Institute of Construction Technology, Harbin 150000, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China 
 MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150000, China 
First page
6038
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716573953
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.