Full Text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Upland forest soil is an important CH4 sink that plays a key role in climate change mitigation. China features large areas of various types of forest, but spatiotemporal variation in CH4 flux has not yet been clarified. Here, we analyzed variation in CH4 flux and the effects of environmental variables on the CH4 flux of forest in China using in situ observational data. Upland forest soil absorbed CH4 at a rate of 0.24 ± 0.02 g m−2 yr−1. The CH4 uptake rate (0.46 ± 0.10 g m−2 yr−1) of warm temperate deciduous broad-leaved forest was the highest. Soil alkali-hydrolyzable nitrogen was the only factor significantly correlated with CH4 uptake variation among vegetation zones. A break point in CH4 uptake over the study period (from 1997 to 2020) was detected in 2015. CH4 uptake slightly decreased until 2015 and increased after 2015. The mean CH4 uptake of the period after 2015 (0.44 ± 0.07 g m−2 yr−1) was significantly higher than that before 2015 (0.20 ± 0.02 g m−2 yr−1). Atmospheric nitrogen deposition was negatively related to interannual CH4 uptake. Our findings suggest that the CH4 uptake of upland forest soil will continue to increase over the next few decades as China accelerates efforts to achieve its carbon neutrality goal, and this would result in continuous decreases in nitrogen deposition through various pathways.

Details

Title
Increases in the Methane Uptake of Upland Forest Soil in China Could Significantly Contribute to Climate Change Mitigation
Author
Yang, Meng
First page
1270
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706191981
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.