Full Text

Turn on search term navigation

Copyright © 2022 Di Teng. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Today, the Industrial Internet of Things (IIoT) and network technology are highly developed, and network data breaches occur every year. Therefore, an anti-intrusion detection system has been established to improve the privacy law security protection of IIoT. In the adversarial network, the security performance requirements and structural system of the Internet of Things have high-strength requirements. The network system must adopt a system with strong stability and a low data loss rate. After comparing a large number of network structures, the initial network technology in deep learning is adopted. The Convolutional Neural Network (CNN) technology for handwritten character recognition optimizes and upgrades the LeNet-5 network, and the new LeNet-7 is built. Additionally, three network technologies are combined, and an IIoT anti-intrusion detection system is constructed. The performance of the system is tested and verified. The model has high data accuracy, detection rate, and low false-positive rate. The model’s generality on high-performance data is validated and compared with privacy-aware task offloading methods, achieving the best performance. Therefore, the system can be applied to the data privacy law security protection of IIoT.

Details

Title
Industrial Internet of Things Anti-Intrusion Detection System by Neural Network in the Context of Internet of Things for Privacy Law Security Protection
Author
Teng, Di 1   VIAFID ORCID Logo 

 Department of Law, Harbin Finance University, Harbin 150000, China 
Editor
Mu-Yen Chen
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
e-ISSN
15308677
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2678218504
Copyright
Copyright © 2022 Di Teng. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.