Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A set of ceria-manganese mixed metal oxide catalysts with varying Ce:Mn ratios were prepared by coprecipitation using sodium carbonate and were evaluated for the total oxidation of propane and naphthalene. Manganese-rich samples were the most active, with Ce0.25Mn0.75Ox having the highest activity. Catalysts were characterised using X-ray diffraction, Brunauer–Emmett–Teller (BET) surface area, Raman spectroscopy, temperature programmed reduction (TPR), electron microscopy, and X-ray photoelectron spectroscopy (XPS), establishing that the high activity of Ce0.25Mn0.75Ox was due to the formation of phase-separated Mn-substituted ceria and Mn2O3 phases that were not simultaneously present in the other catalysts. The catalyst preparation technique for the most active ratio was investigated using co-precipitation by urea, oxalic acid and citric acid, and mechanochemical grinding. For propane, the mechanochemical and urea catalysts were more active than the carbonate coprecipitated catalyst, due to greater surface area and increased phase separation. This work demonstrates that ceria-manganese mixed metal oxides are more active than the parent oxide, but that preparation technique is also important for controlling activity.

Details

Title
The Influence of Cerium to Manganese Ratio and Preparation Method on the Activity of Ceria-Manganese Mixed Metal Oxide Catalysts for VOC Total Oxidation
Author
Shah, Parag M; Bailey, Liam A  VIAFID ORCID Logo  ; Taylor, Stuart H  VIAFID ORCID Logo 
First page
114
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734344
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767187924
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.