Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Blends based on polylactic acid (PLA), chitosan, and grape seed extract (GE) were prepared by extrusion and injection molding. The effect of chitosan (5% and 15% on PLA basis) and natural extract (1% on PLA basis) incorporated into the PLA host matrix was explored regarding the thermal and mechanical properties. GE showed antioxidant activity, as determined by the DPPH assay method. Chitosan and GE affect the degree of crystallinity up to 30% as the polysaccharide acts as a nucleating agent, while the extract reduces the mobility of PLA chains. The decomposition temperature was mainly affected by adding chitosan, with a reduction of up to 25 °C. The color of the blends was specially modified after the incorporation of both components, obtaining high values of b* and L* after the addition of chitosan, while GE switched to high values of a*. The elongation at break (EB) exhibited that the polysaccharide is mainly responsible for its reduction of around 50%. Slight differences were accessed in tensile strength and Young’s modulus, which were not statistically significant. Blends showed increased irregularities in their surface appearance, as observed by SEM analysis, corresponding to the partial miscibility of both polymers.

Details

Title
Influence of Chitosan and Grape Seed Extract on Thermal and Mechanical Properties of PLA Blends
Author
Goetjes, Victoria 1   VIAFID ORCID Logo  ; von Boyneburgk, Claudia L 1   VIAFID ORCID Logo  ; Heim, Hans-Peter 1 ; Horn, Marilia M 2   VIAFID ORCID Logo 

 Institute of Material Engineering, Polymer Engineering, University of Kassel, Mönchebergstr. 3, 34125 Kassel, Germany 
 Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinich-Plett Straße 40, 34109 Kassel, Germany 
First page
1570
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791700839
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.