Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The effects of Nb content on precipitation, microstructure, texture and magnetic properties of primary recrystallized grain-oriented silicon steel were investigated by various methods. The results show that the precipitates in primary recrystallized sheets are mainly MnS, Nb(C,N), composite precipitates of MnS and AlN, and composite precipitates of Nb(C,N) and AlN. Adding niobium could refine the primary recrystallized microstructure. The steel with 0.009 wt% Nb possesses the finest and the most dispersed precipitates, which contributes to the finest primary recrystallized microstructure due to the strong pinning force. Adding niobium is beneficial to obtain large volume fraction favorable texture for grain-oriented silicon steel, and the effect of Nb addition is not obvious when the content is higher than 0.009 wt%. After final annealing, the steel with 0.009 wt% Nb shows the best magnetic properties, B800 = 1.872 T, P1.7/50 = 1.25 W/kg.

Details

Title
Influence of Nb Content on Precipitation, Grain Microstructure, Texture and Magnetic Properties of Grain-Oriented Silicon Steel
First page
5581
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2469549212
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.