Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This research aimed to reveal the response characteristics of soil microbial community structure to different degrees of tourism disturbance. To explore the soil microbial community structure’s response mechanism, we set up continuous plots with different interference intensities: high disturbance, middle disturbance, and the control area. We collected 0–10 cm topsoil in all plots and used Illumina MiSeq high-throughput sequencing method to obtain and analyze the response characteristics of soil microbial community composition and structure under different tourism disturbances. These results were then combined with alpha diversity and environmental factors to explore the microbial response mechanism. In the tested soil, Acidobacteria, Chlorocurve, and Proteobacteria were the main bacterial phyla, while Basidiomycota and Ascomycota were the main fungal phyla. Based on the phylum, the relative abundance of the microbial community between the interference groups was compared using a significance test, with significant differences found between the interference groups in the phyla Chloroflexus, GAL15, Rokubacteria, and Blastomonas (p < 0.05). The relative abundance of the dominant phyla in the fungal community was significantly different among the groups (p < 0.05). A principal component analysis of the soil microbial community structure suggested that the soil microbial community structure was significantly different for different interference levels.

Details

Title
Influence of Tourism Disturbance on Soil Microbial Community Structure in Dawei Mountain National Forest Park
Author
Li, Qunjun 1 ; Dai, Meiqi 1 ; Luo, Fen 1   VIAFID ORCID Logo 

 College of Tourism, Central South University of Forestry and Technology, Changsha 410004, China; [email protected] (Q.L.); [email protected] (F.L.); College of Tourism, Engineering Research Center for Forest Tourism of State Forestry and Grassland Bureau of China, Changsha 410004, China 
First page
1162
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627847147
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.