Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Object detection is one of the most popular areas today. The new models of object detection are created continuously and applied in various fields that help to modernize the old solutions in practice. In this manuscript, the focus has been on investigating the influence of training parameters on similar object detection: image resolution, batch size, iteration number, and color of images. The results of the model have been applied in real-time object detection using mobile devices. The new construction detail dataset has been collected and used in experimental investigation. The models have been evaluated by two measures: the accuracy of each prepared model has been measured; results of real-time object detection on testing data, where the recognition ratio has been calculated. The highest influence on the accuracy of the created models has the iteration number chosen in the training process and the resolution of the images. The higher the resolution of the images that have been selected, the lower the accuracy that has been obtained. The small iteration number leads to the model not being well trained and the accuracy of the models being very low. Slightly better results were obtained when the color images were used.

Details

Title
Influence of Training Parameters on Real-Time Similar Object Detection Using YOLOv5s
Author
Kvietkauskas, Tautvydas 1   VIAFID ORCID Logo  ; Stefanovič, Pavel 2 

 Department of Information Technology, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania 
 Department of Information Systems, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania 
First page
3761
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791589197
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.