Full Text

Turn on search term navigation

Copyright © 2018 Zhaoxia Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Concrete slurry can be sprayed on walls for reinforcement; however, there is a certain amount of rebound which is hazardous, lowers production quality, and wastes material. To investigate this problem, we studied single slurry droplets at the mesoscopic level. We deduced the factors influencing droplet spreading and wall adhesion to create models of shotcrete rebound. Then, a numerical simulation orthogonal experiment investigating droplet-wall impacts was performed. The relationship between the spreading coefficient and each influencing factor is discussed, and numerical models are presented. Finally, the obtained models are verified by physical experiments. The results show that the spreading coefficient can be used to better characterize the effect of slurry droplet adhesion to walls. Modeled and experimentally observed droplet-wall impacts showed good consistency. The influence of each factor on the spreading coefficient was determined in the following order of strength: droplet velocity and viscosity, wall roughness, and surface tension. The spreading coefficient increases with velocity, decreases with viscosity and roughness, and increases first and then decreases with surface tension. This study improves the fluid dynamics-based theory of multiphase flow in concrete slurry and provides a theoretical basis for mitigating shotcrete rebound.

Details

Title
Influences on Shotcrete Rebound from Walls with Random Roughness
Author
Liu, Zhaoxia 1 ; Bian, Wenhui 2   VIAFID ORCID Logo  ; Pan, Gang 1   VIAFID ORCID Logo  ; Li, Pengcheng 2 ; Li, Wenxin 1 

 College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China 
 College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China 
Editor
Michael Aizenshtein
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
16878434
e-ISSN
16878442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2129408625
Copyright
Copyright © 2018 Zhaoxia Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/