Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The marine environment in which offshore wind turbines are located is very complex and subjected to a variety of random loads that vary with time and space. As an important component of offshore wind power, the cable also bears the impact of the environment in which most of the turbines are located. Under the long-term action of mechanical stresses such as tension, torsion, and vibration, the cable insulation will crack due to stress fatigue leading to partial discharge, which seriously affects its electrical performance. The study of the mechanism of the change of electrical properties of cable insulation due to mechanical behavior is of great theoretical guidance to improve the reliable operation of cables. This paper first introduces the basic characteristics and operating conditions of torsion-resistant cables and submarine cables. Then the mechanical behavior of the cables is summarized, and the deterioration mechanism and deterioration effect of wind power cable insulation under the influence of multiple factors such as heat, oxygen, and mechanical stress are sorted out. Then, the basic principles of wind power cable operation condition monitoring methods and their characteristics are described. Finally, the relevant methods for the detection of hidden defects inside the insulation are summarized.

Details

Title
Insulation Degradation Mechanism and Diagnosis Methods of Offshore Wind Power Cables: An Overview
Author
Lu, Baopeng 1 ; Li, Shuaibing 1   VIAFID ORCID Logo  ; Cui, Yi 2 ; Zhao, Xiaowei 3 ; Zhang, Daqi 1 ; Kang, Yongqiang 1   VIAFID ORCID Logo  ; Dong, Haiying 1 

 School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 
 School of Engineering, University of Southern Queensland, Brisbane 4702, Australia 
 Linxia Power Supply Company, State Grid Gansu Electrical Power Company, Linxia 731100, China 
First page
322
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761183641
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.