Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Urbanisation processes inherently influence land cover (LC) and have dramatic impacts on the amount, distribution and quality of vegetation cover. The latter are the source of ecosystem services (ES) on which humans depend. However, the temporal and thematical dimensions are not documented in a comparable manner across Europe and China. Three cities in China and three cities in Europe were selected as case study areas to gain a picture of spatial urban dynamics at intercontinental scale. First, we analysed available global and continental thematic LC products as a data pool for sample selection and referencing our own mapping model. With the help of the Google Earth Engine (GEE) platform and earth observation data, an automatic LC mapping method tailored for more detailed ES features was proposed. To do so, differentiated LC categories were quantified. In order to obtain a balance between efficiency and high classification accuracy, we developed an optimal classification model by evaluating the importance of a large number of spectral, texture-based indices and topographical information. The overall classification accuracies range between 73% and 95% for different time slots and cities. To capture ES related LC categories in great detail, deciduous and coniferous forests, cropland, grassland and bare land were effectively identified. To understand inner urban options for potential new ES, dense and dispersed built-up areas were differentiated with good results. In addition, this study focuses on the differences in the characteristics of urban expansion witnessed in China and Europe. Our results reveal that urbanisation has been more intense in the three Chinese cities than in the three European cities, with an 84% increase in the entire built-up area over the last two decades. However, our results also show the results of China’s ecological restoration policies, with a total of 963 km2 of new green and blue LC created in the last two decades. We proved that our automatic mapping can be effectively applied to future studies, and the monitoring results will be useful for consecutive ES analyses aimed at achieving more environmentally friendly cities.

Details

Title
Integrated Mapping of Spatial Urban Dynamics—A European-Chinese Exploration. Part 1—Methodology for Automatic Land Cover Classification Tailored towards Spatial Allocation of Ecosystem Services Features
Author
Banzhaf, Ellen 1   VIAFID ORCID Logo  ; Wu, Wanben 2 ; Luo, Xiangyu 3   VIAFID ORCID Logo  ; Knopp, Julius 1 

 UFZ-Helmholtz Centre for Environmental Research, Department Urban and Environmental Sociology, Permoserstr. 15, 04318 Leipzig, Germany; [email protected] 
 Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai Institute of EcoChongming (SIEC), Fudan University, Shanghai 200433, China; [email protected] 
 Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing 100084, China; [email protected] 
First page
1744
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2530137825
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.