Full Text

Turn on search term navigation

© 2017 Chalise, Fridley. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Integrative analyses of high-throughput ‘omic data, such as DNA methylation, DNA copy number alteration, mRNA and protein expression levels, have created unprecedented opportunities to understand the molecular basis of human disease. In particular, integrative analyses have been the cornerstone in the study of cancer to determine molecular subtypes within a given cancer. As malignant tumors with similar morphological characteristics have been shown to exhibit entirely different molecular profiles, there has been significant interest in using multiple ‘omic data for the identification of novel molecular subtypes of disease, which could impact treatment decisions. Therefore, we have developed intNMF, an integrative approach for disease subtype classification based on non-negative matrix factorization. The proposed approach carries out integrative clustering of multiple high dimensional molecular data in a single comprehensive analysis utilizing the information across multiple biological levels assessed on the same individual. As intNMF does not assume any distributional form for the data, it has obvious advantages over other model based clustering methods which require specific distributional assumptions. Application of intNMF is illustrated using both simulated and real data from The Cancer Genome Atlas (TCGA).

Details

Title
Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm
Author
Chalise, Prabhakar; Fridley, Brooke L
First page
e0176278
Section
Research Article
Publication year
2017
Publication date
May 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1893857688
Copyright
© 2017 Chalise, Fridley. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.