1. Introduction
Type 2 diabetes mellitus is a complex disease induced by a combination of environmental and genetic factors. It is estimated that approximately 463 million adults aged 20–79 years suffer from diabetes globally, which is expected to surge to 700 million by 2045 [1,2]. Complications of diabetes seriously affect the physical health of patients and lead to a heavy health burden of disability and mortality, consuming massive loss of social resources [1]. Genome-wide association studies (GWAS) have identified more than 500 susceptibility loci that demonstrate a robust association with type 2 diabetes [3]. In contrast to the tremendous stride in GWAS research, the conundrum of “missing heritability” in type 2 diabetes has progressed slowly and arduously. The identified genetic variants explain only 19% of the familial clustering of type 2 diabetes [4,5].
An extensive overview of pleiotropy and genetic architecture showed that 90% of trait-associated loci overlap with loci from multiple traits [6]. Combining GWAS from multiple phenotypes provides insights into genetic pleiotropy and could elucidate shared pathobiology [7]. The conjunctional false discovery rate (conjFDR), an extension of the conditional false discovery rate (condFDR), is such an approach that boosts GWAS discovery by leveraging auxiliary genetic information to readjust the GWAS test statistics in a primary phenotype and was applied for cross-trait analysis by leveraging overlapping SNP associations between separate GWAS to rerank the test statistics in a primary phenotype conditional on the associations in a secondary phenotype [8,9]. This method is a model-free strategy for the analysis of GWAS summary statistics inspired by the empirical Bayes statistical framework, which is designed for situations with dense elements, such as the large number of small genetic effects seen in polygenic traits and disorders [8,9].
Accumulating evidence suggests that sleep traits may have indispensable effects on the development of type 2 diabetes, such as insomnia and chronotype. Insomnia disorder is the second-most prevalent mental disorder with prevalence estimates ranging from 10% (adults) to 22% (elderly) and is characterized by lasting problems falling asleep or waking up in the night or early morning, with subjective repercussions for daytime functioning [10]. The adverse effect of insomnia on type 2 diabetes risk was verified by multiple observational studies and Mendelian randomization studies [11,12,13]. A 12-day inpatient General Clinical Research Center study found that sleep restriction significantly reduces insulin sensitivity [14], and simple sleep interventions such as sleep extension are associated with improvements in fasting insulin sensitivity [15]. In addition to the above epidemiological evidence, genome-wide association studies (GWAS) have provided new insights into the complex genetic mechanisms between type 2 diabetes and sleep traits. Polygenic risk scores for sleep duration obtained from GWAS summary statistics are associated with an increased likelihood of various metabolic traits [16]. There is also a correlation between genetic risk factors for insomnia and the risk of type 2 diabetes (rg = 0.20) [17]. Chronotype of an individual refers to the specific entrainment and/or activity-rest preference of that individual in a given 24-h day [18]. It can be denoted as circadian topology or diurnal preference and may manifest as measures of the timing of actual sleep-wake behaviors or preference for sleep-wake timing under idealized conditions [19]. Early risers who are preferentially active in the mornings are said to have a morning chronotype and are often dubbed as larks, and late risers with more nocturnal activities have late chronotypes and are popularly dubbed owls. The literature suggests that circadian rhythms are important to weight regulation and metabolism. Suggested mechanisms include dietary behavior, appetite-stimulating hormones, and glucose metabolism [20]. Therefore, shared genetic influences of sleep traits can be highly valuable for type 2 diabetes to provide biological insights and uncover shared biological underpinnings. A comprehensive study is needed to decipher whether shared polygenic risk variants exist between diabetic traits and sleep traits, which is essential to unveil the genetic mechanisms of type 2 diabetes and impel early prevention and therapy.
In this study, we investigated the polygenic overlap between type 2 diabetes and sleep traits using the conjFDR approach and focused on pleiotropic genes. In order to better understand type 2 diabetes pathophysiology, we also included other diabetes-related traits, including fasting glucose (FG), glycated hemoglobin (HbA1c), and fasting insulin (FI). We further assessed whether the pleiotropic genes were enriched in particular pathways and their expression pattern effects on type 2 diabetes.
2. Materials and Methods
2.1. Study Participants
GWAS results in the form of summary statistics on type 2 diabetes were acquired from Mahajan et al.’s work [21]. In this study, 403 independent association signals were detected by conditional analyses at each of the genome-wide significant risk loci for type 2 diabetes (except at the major histocompatibility complex (MHC) region). Summary-level data are available at the DIAGRAM consortium (
Summary statistics results of sleep traits were obtained from Jansen et al.’s study [23]. The freely available meta-analytic sleep traits (insomnia symptoms, sleep duration, and chronotype) represent results partly provided by the UK Biobank Study (
The UK Biobank collected a single self-reported measure at baseline of sleep traits. Insomnia symptoms were assessed by asking, “Do you have trouble falling asleep at night or do you wake up in the middle of the night?”, with responses “Never/rarely”, “Sometimes”, “Usually”, or “Prefer not to answer”. Those who responded “prefer not to answer” were missing. Insomnia cases (n = 109,402) were defined as participants who answered this question with “usually”, while participants answering “never/rarely” or “sometimes” were defined as controls (n = 277,131). “Usually have trouble falling asleep at night or waking up in the middle of the night” may be the most important part of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) and International Classification of Sleep Disorders (ICSD) diagnostic criteria for insomnia disorder, so this definition of insomnia symptoms from the self-reported measure was validated to be closer to the DSM-5 and ICSD diagnostic criteria than the commonly used Insomnia Severity Index (ISI) or Pittsburgh Sleep Quality Index (PSQI). Additionally, it previously showed excellent sensitivity (98%) and specificity (96%) of the UK Biobank insomnia phenotype to differentiate between cases that consistently met both the ISI and PSQI criteria versus controls that consistently were below both the ISI and PSQI cut-off scores [10]. Thus, we used this phenotype as a proxy for insomnia. Sleep duration, obtained from 384,317 individuals, was a quantitative variable assessed by asking, “About how many hours sleep do you get in every 24 h? (please include naps)”. Chronotype (“Morning/evening person (chronotype)”; data-field 1180, n = 345,552) was assessed by the question “Do you consider yourself to be?” with one of six possible answers: “Definitely a ‘morning’ person”, “More a ‘morning’ than ‘evening’ person”, “More an ‘evening’ than a ‘morning’ person”, “Definitely an ‘evening’ person”, “Do not know”, or “Prefer not to answer”, which were coded as 2, 1, −1, −2, 0, and missing, respectively. Summary-level data are available at
2.2. Statistical Analysis
2.2.1. Conditional Quantile–Quantile (Q–Q) Plots
We constructed conditional Q–Q plots to assess pleiotropic enrichment between diabetes-relevant traits and sleep traits. Conditional Q–Q plots compare the association with the primary phenotype (e.g., type 2 diabetes) across all single-nucleotide polymorphisms (SNPs) and within SNPs stratified by their association with the secondary phenotype (e.g., insomnia). Successive leftward deflections from the null distribution of conditional Q–Q plots denoted the existence of pleiotropic enrichment. Spurious enrichment was controlled after random pruning by selecting one random SNP per linkage disequilibrium (LD) block (defined by LD r2 > 0.1) averaged over 100 iterations.
2.2.2. Identification for Pleiotropic Loci
We identified specific loci jointly involved with diabetes-relevant traits and sleep traits according to a condFDR statistical framework (
2.2.3. Functional Annotation
The significant SNPs identified were annotated by SNPNexus (
2.2.4. Expression Analysis of Pleiotropic Genes
In order to evaluate whether the identified pleiotropic genes are differentially expressed, we used the publicly available expression dataset GSE184050 from the Gene Expression Omnibus (
2.2.5. Mendelian Randomization Study
In order to investigate causal associations between the expression pattern of pleiotropic genes and type 2 diabetes, we used eQTLGen 2019 results comprising all cis and some trans regions of gene expression in whole blood to perform a two-sample Mendelian randomization study. The eQTLGen consortium was set up to identify the downstream consequences of trait-related genetic variants. The consortium incorporates 37 datasets, with a total of 31,684 individuals [30]. We outlined acceptable instrumental variables via three main assumptions: they were associated with the relevant risk factor (relevance assumption), they and the outcome had no common cause (independence assumption), and the outcome was not affected by them except via the risk factor (exclusion restriction assumption) [31]. Genetic instrumental variables for eQTL summary statistics of pleiotropic genes were acquired from OpenGWAS, developed by the MRC IEU OpenGWAS project, the contributor of TwoSampleMR (
We used the widely accepted inverse-variance weighted (IVW) method for the main analysis to estimate the causal effect between pleiotropic genes and type 2 diabetes. The IVW estimate is calculated by regressing the coefficient from an outcome regression on the genetic variant on that from an exposure regression on the variant and weighting each estimate by the inverse variance of the association between the instrument and the outcome [33].
3. Results
3.1. Assessment of Pleiotropic Enrichment
We observed successive increments of SNP enrichment for diabetes-relevant phenotypes as a function of the significance of the associations with sleep traits (Figure 1). For a given nominal p-value for each diabetes-relevant trait, an earlier departure from the null line indicates a greater proportion of true associations. Gradual leftward shifts for decreasing nominal sleep traits p-values indicate that the proportion of nonnull SNPs varies considerably across different levels of association with sleep traits, which could be interpreted as the polygenic overlap between these phenotypes. Type 2 diabetes showed obvious pleiotropic enrichment with sleep traits. All diabetes-relevant phenotypes showed significant pleiotropy with chronotype.
3.2. Pleiotropic Gene Loci in Diabetes-Relevant Phenotype and Sleep Traits Identified with ConjFDR
Based on a conjFDR less than 0.05, we identified 58 independent genetic loci shared between type 2 diabetes and sleep traits (Figure 2). For FG, FI, and HbA1c, 22, 8, and 11 independent genetic loci were shared with sleep traits (Table 1; Supplemental Tables S1–S3). The strongest shared locus between type 2 diabetes and sleep straits was FTO (lead SNP rs8047587). It was shared between type 2 diabetes (z score, 16.19; P = 6.29 × 10−59) and two sleep traits, sleep duration (z score, −6.66; P = 2.66 × 10−11) and chronotype (z score, 7.42; P = 1.19 × 10−13), demonstrating the importance of the locus for disease pathogenesis. Two loci, EHMT2 (lead SNP rs1265945) and lincRNA RP1-230L10.1 (lead SNP rs66930764), shared by type 2 diabetes and chronotype, were duplicated in FI. The pleiotropic locus MTNR1B (lead SNP rs4237555) was identified among type 2 diabetes (z score, −7.86; P = 3.84 × 10−15), FG (z score, −19.19; P = 4.20 × 10−82), HbA1c (z score, −7.50; P = 6.26 × 10−14), and chronotype (z score, −4.85; P = 1.22 × 10−6).
3.3. Functional Annotation of Pleiotropic Gene
Five SNPs (rs10881959, rs11039358, rs2236950, rs12485697, rs1296328) had CADD scores greater than 12.37, suggesting that they might be deleterious mutations (Supplemental Table S4). One SNP (rs174555), shared among FG, HbA1c, and sleep duration, had Regulome DB scores of 1f, indicating that it was likely affecting binding sites (Supplemental Table S5). At the false discovery rate 0.05 level, KEGG pathway enrichment analysis found that HSD17B12, FADS2, and FADS1 were significantly enriched in the biosynthesis of unsaturated fatty acids (hsa01040), of which FADS2 and FADS1 were the overlapping genes with SNP rs174555.
3.4. Differential Expression of Pleiotropic Genes
Among the pleiotropic genes screened, we found 12 genes differentially expressed in blood samples of type 2 diabetes cases (p < 0.05, Supplemental Table S8). ENSA and PMPCA remained significant after the stringent statistical analysis using the Benjamini–Hochberg corrected two-tailed t-test (Supplementary Figure S1). ENSA (lead SNP rs2055975), overexpressed in type 2 diabetes cases, was shared by HbA1c (z score, −5.15; P = 2.57 × 10−7) and chronotype (z score, 5.73; P = 1.00 × 10−8). PMPCA (lead SNP rs10747046), which was downregulated in type 2 diabetes cases, was shared between FG (z score, −4.32; P = 1.53 × 10−5) and chronotype (z score, 4.47; P = 7.79 × 10−6).
3.5. Mendelian Randomization Study
In a two-sample MR study, IVW yielded proof of causal relationships between the expression level of pleiotropic genes and the risk of type 2 diabetes (Table 2; Supplemental Tables S6 and S7). Overexpression of CPEB3(OR = 1.43, 95% CI: 1.30–1.56, p < 0.0001), INPP5E (OR = 1.10, 95% CI: 1.07–1.13, p < 0.0001), and SEC16A (OR = 1.08, 95% CI: 1.05–1.12, p < 0.0001) were associated with higher risk for developing type 2 diabetes, while MYBPC3(OR = 0.95, 95% CI: 0.92–0.99, p = 0.0173), MYRF(OR = 0.94, 95% CI: 0.90–0.98, p = 0.0049), and PMPCA (OR = 0.74, 95% CI: 0.62–0.87, p = 0.0003) showed slightly protective effect on type 2 diabetes (Table 2). The weighted medians for MYBPC3 and INPP5E revealed similar estimates. Intriguingly, both PMPCA and INPP5E showed a significant association with chronotype, which is in opposite directions to type 2 diabetes, indicating that people who are prone to be more an “evening” than a “morning” person have a higher risk for developing type 2 diabetes. IVW yielded an association between chronotype and type 2 diabetes (OR = 1.37, 95% CI: 1.09–1.72, p = 0.0068), while other estimates showed that it was not robust. We also considered the causal effect of the differentially expressed genes ENSA and PMPCA on the shared phenotypes. Wald’s ratio method estimated that the overexpression of PMPCA had slight effects on lowering FG (OR = 0.90, 95% CI: 0.86–0.94, p < 0.0001).
4. Discussion
In the current study, we observed extensive polygenic pleiotropy between diabetic traits and sleep traits using conjFDR analysis. Fifty-eight independent genetic loci jointly influenced the risk of type 2 diabetes and the sleep traits of insomnia, sleep duration, and chronotype. Two of the pleiotropic genes, ENSA and PMPCA, were validated to be differentially expressed in type 2 diabetes, and PMPCA showed a slight protective effect on type 2 diabetes in MR analysis. Our study provides integrative evidence of a shared genetic mechanism between diabetes and sleep traits.
The strongest shared locus between type 2 diabetes and sleep traits was FTO (lead SNP rs8047587), a well-known gene associated with body mass index, obesity risk, and type 2 diabetes. However, the association between FTO and sleep traits has not been well discerned. Prats-Puig et al. showed that TT homozygotes for the FTO SNP exhibited nominal associations between decreasing sleep duration and increasing BMI, waist circumference, visceral fat, and HOMA-IR (all p < 0.05) in 297 asymptomatic children aged 5–9 years [34]. It is worth noting that FTO is predominantly expressed in the brain. Disruption in mice of Fto showed diet- or obesity-related changes in expression in the hypothalamus [35,36]. Abundant evidence supports multiple possible roles of the central nervous system in body weight regulation [37], and our study emphasized the role of sleep in the regulatory process.
Two notable pleiotropic genes were ENSA (lead SNP rs2055975) and PMPCA (lead SNP rs10747046), which were differentially expressed in type 2 diabetes cases. ENSA is expressed in brain and endocrine tissues and was proposed as a candidate gene for type 2 diabetes. It encodes alpha-endosulfine, which has the ability to block ATP-sensitive potassium (K(ATP)) channels and stimulate insulin release in beta cells such as sulfonylurea [38]. The considerably decreased alpha-endosulfine could result in a decrease in neurotransmitter release associated with cognition [38]. In our study, PMPCA showed a slight protective effect on type 2 diabetes and lowered FG. The literature on the direct role of PMPCA in diabetes is sparse, while a homozygous mutation in PMPCA has been reported to be crucial for autosomal recessive cerebellar ataxia [39,40]. PMPCA encodes the α-subunit of mitochondrial processing peptidase (MPP), a heterodimeric enzyme responsible for the cleavage of nuclear-encoded mitochondrial precursor proteins after import into mitochondria [41]. As previously mentioned, mitochondrial dysfunction leads to impairment of insulin sensitivity by reducing the activity of AMPK, an important cellular fuel sensor and regulator [42]. Agents addressing impaired mitochondrial function were thought to have the greatest potential for supporting a substantial improvement of glycemic and body weight control in the growing population with type 2 diabetes [43]. This may partly explain the pleiotropy of PMPCA in type 2 diabetes and sleep traits.
Our study showed that both PMPCA and INPP5E showed a significant association with chronotype, which is in opposite directions with type 2 diabetes, which suggested that people who are prone to be more of an “evening” than a “morning” person have a higher risk for developing type 2 diabetes. This is consistent with the latest systematic review and a cross-sectional study showing that evening chronotype was associated with a worse cardiometabolic risk profile and a higher risk of diabetes, cancer, and depression [44,45]. The latest research showed circadian rhythm disruption perturbed glucose homeostasis through disruption of pancreatic β cell function and loss of circadian transcriptional and epigenetic identity [46]. However, the opposite result was found in MR analysis, in which the IVW estimate yielded a morning chronotype and had an adverse effect on type 2 diabetes (OR = 1.37, 95% CI: 1.09–1.72, p = 0.0068). On the one hand, the odd results of the unrobust MR analysis suggest that MR studies should be validated more widely with multiple methods. On the other hand, Reis-Canaan’s study showed that most morning chronotype individuals were elderly thin males with lower consumption of omega-6 and omega-3, sodium, zinc, thiamine, pyridoxine, and niacin, whereas evening individuals were younger, had higher BMI, and had higher consumption of the studied micronutrients [47]. This indicates that the association between diabetes and chronotype is extremely entangled. The interpretation should be careful, and further well-designed studies should be conducted.
Our research had some limitations. First, overlapping participants between the investigated GWAS may inflate the cross-trait enrichment in the condFDR statistical framework. However, we had to choose a stringent threshold (conjFDR < 0.01) instead of the default parameter setting (0.05) to control for false positives. Another limitation is the use of self-reported sleep symptoms rather than clinical diagnostic criteria. Measurement errors and recall bias would result in misclassification of case status, especially for insomnia which we used insomnia complain as a proxy. Although a previous study showed that the UK Biobank insomnia phenotype is predictive of insomnia disorder, with little confounding by comorbidity [10], large-scale summary statistics for a precise definition of clinical diagnostic insomnia was desired in subsequent studies. Finally, our study requires more fundamental work to detect the underlying biological mechanisms between diabetes and sleep traits.
5. Conclusions
Our study provided evidence for the polygenic overlap between diabetic traits and sleep traits, of which the expression of PMPCA may play a crucial role and provide support of the hazardous effect of being an “evening” person on diabetes risk.
D.C. conceived the study and undertook project leadership. In addition, D.C., T.W. and Y.W. were the guarantors of this work. Y.M. wrote the first draft of the manuscript, analyzed data, and interpreted the results. Z.Z., X.L., Z.Y., K.D. and H.X. were involved in the data collection. All authors contributed to the drafting and critical revision of the manuscript. All authors have read and agreed to the published version of the manuscript.
This research was funded by the National Natural Science Foundation of China (No. 81872692; No. 82073642).
The present study did not follow a prespecified analysis plan or protocol. Ethics approval was not required for this study because the data are publicly available, deidentified, summary-level data. The patients/participants provided their written informed consent to participate in the original studies.
Not applicable.
Our datasets analyzed during the current study were derived from the following public domain resources: Summary statistics of type 2 diabetes is available from DIAGRAM consortium (
We thank the research participants and researchers of the DIAGRAM consortium (
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figure 1. Polygenic overlap between diabetes-related traits (type 2 diabetes, fasting glucose, glycated hemoglobin, and fasting insulin) and sleep traits (insomnia symptoms, sleep duration, and chronotype). Conditional Q–Q plots of nominal versus empirical −log10 p-values (corrected for inflation) in type 2 diabetes, fasting glucose, glycated hemoglobin, and fasting insulin, below the standard genome-wide association study threshold of 5 × 10−8 as a function of significance of association with insomnia, sleep duration, and chronotype, respectively, at the level of −log10 (p) ≥ 1, −log10 (p) ≥ 2, and −log10 (p) ≥ 3, corresponding to p ≤ 0.10, p ≤ 0.01, and p ≤ 0.001, respectively. The blue lines indicate all SNPs. The dashed lines indicate the null hypothesis.
Figure 2. Conjunction FDR Manhattan plot of conjunctional –log10 (FDR) values for type 2 diabetes and insomnia, sleep duration, or chronotype. SNPs with conjunctional FDR < 0.01 (i.e., conjunctional –log10 (FDR) > 2.0) are shown with enlarged data points, whereas the small points represent other SNPs. A black circle around the enlarged data points indicates the most significant SNP in each LD block. The figures show the localization of the “conjunctional loci”, and further details are presented in Table 1.
Genetic loci with conjunction FDR < 0.01 shared between type 2 diabetes and sleep traits.
Locus No. | SNP | Gene | Chr:Pos | A1/A2 | Z Score |
Z Score |
ConjFDR | p-Value Type 2 Diabetes | p-Value |
---|---|---|---|---|---|---|---|---|---|
Type 2 diabetes and insomnia | |||||||||
1 | rs2820290 | NAV1 | 1:201783682 | A/G | −3.90 | −4.62 | 0.01 | 9.69 × 10−5 | 3.88 × 10−6 |
1 | rs2820290 | IPO9-AS1 | 1:201783682 | A/G | −3.90 | −4.62 | 0.01 | 9.69 × 10−5 | 3.88 × 10−6 |
2 | rs4688760 | RBM6 | 3:49980596 | C/T | −5.67 | −4.42 | 0.01 | 1.44 × 10−8 | 9.82 × 10−6 |
3 | rs67073213 | Upstream: SPATA18; |
4:53286872 | A/G | 3.87 | −4.48 | 0.01 | 1.10 × 10−4 | 7.57 × 10−6 |
4 | rs26434 | PAM | 5:102363402 | C/T | 5.90 | −4.40 | 0.01 | 3.58 × 10−9 | 1.10× 10−5 |
5 | rs4526367 | MSRA | 8:10213462 | G/A | −4.96 | 5.49 | 0.00 | 7.10 × 10−7 | 3.99 × 10−8 |
6 | rs4735334 | NDUFAF6 | 8:95955292 | G/A | 3.98 | 4.63 | 0.01 | 6.91 × 10−5 | 3.70 × 10−6 |
6 | rs4735334 | TP53INP1 | 8:95955292 | G/A | 3.98 | 4.63 | 0.01 | 6.91 × 10−5 | 3.70 × 10−6 |
Type 2 diabetes and sleep duration | |||||||||
7 | rs4949329 | PUM1 | 1:31440361 | T/C | −4.04 | 4.78 | 0.00 | 5.29 × 10−5 | 1.80 × 10−6 |
8 | rs61780511 | Upstream: PUM1; |
1:31546006 | G/A | 3.83 | −4.12 | 0.01 | 1.27 × 10−4 | 3.81 × 10−5 |
9 | rs12137232 | LMOD1 | 1:201885446 | T/G | −3.90 | 4.36 | 0.01 | 9.69 × 10−5 | 1.30 × 10−5 |
10 | rs6711622 | DNMT3A | 2:25531350 | A/G | −3.85 | 4.14 | 0.01 | 1.19 × 10−4 | 3.51 × 10−5 |
11 | rs1641155 | LINC01122 | 2:58965211 | G/T | 4.69 | 4.90 | 0.00 | 2.75 × 10−6 | 9.36 × 10−7 |
12 | rs12485697 | Upstream: RP11-231I13.2; |
3:70543116 | T/C | 3.89 | −4.16 | 0.01 | 1.01 × 10−4 | 3.15 × 10−5 |
13 | rs9844666 | PCCB | 3:135974216 | A/G | 4.19 | 4.60 | 0.00 | 2.77 × 10−5 | 4.27 × 10−6 |
14 | rs1291921 | PCCB | 3:136036226 | A/G | −4.35 | −4.50 | 0.00 | 1.36 × 10−5 | 6.85 × 10−6 |
15 | rs11242483 | PAM | 5:102323766 | T/C | 6.07 | 6.28 | 0.00 | 1.31 × 10−9 | 3.39 × 10−10 |
16 | rs329124 | JADE2 | 5:133865452 | G/A | 5.14 | −4.65 | 0.00 | 2.80 × 10−7 | 3.30 × 10−6 |
17 | rs62442924 | MAD1L1 | 7:1989976 | T/C | −4.15 | 5.16 | 0.00 | 3.33 × 10−5 | 2.47 × 10−7 |
18 | rs7790729 | AUTS2 | 7:69598649 | T/C | 3.76 | 4.07 | 0.01 | 1.69 × 10−4 | 4.77 × 10−5 |
19 | rs3121426 | Upstream: 5-Mar; |
10:94153435 | T/G | −6.69 | −4.29 | 0.00 | 2.19 × 10−11 | 1.82 × 10−5 |
20 | rs11037564 | HSD17B12 | 11:43708725 | C/T | −3.77 | 5.01 | 0.01 | 1.65 × 10−4 | 5.41 × 10−7 |
21 | rs174533 | MYRF | 11:61549025 | A/G | −3.90 | 4.44 | 0.01 | 9.69 × 10−5 | 8.82 × 10−6 |
21 | rs174533 | TMEM258 | 11:61549025 | A/G | −3.90 | 4.44 | 0.01 | 9.69 × 10−5 | 8.82 × 10−6 |
22 | rs12820906 | PITPNM2 | 12:123493123 | G/A | −5.41 | 4.11 | 0.01 | 6.39 × 10−8 | 3.90 × 10−5 |
23 | rs12433645 | NRXN3 | 14:80028314 | T/C | −4.30 | −4.12 | 0.01 | 1.75 × 10−5 | 3.75 × 10−5 |
24 | rs4780887 | PDILT | 16:20393562 | C/A | −3.92 | 4.23 | 0.01 | 8.78 × 10−5 | 2.39 × 10−5 |
25 | rs8047587 | FTO | 16:53798622 | T/G | 16.19 | −6.66 | 0.00 | 6.29 × 10−59 | 2.66 × 10−11 |
Type 2 diabetes and chronotype | |||||||||
26 | rs148262742 | Upstream: CDKN2C; |
1:51472241 | C/T | −5.34 | −3.95 | 0.01 | 9.40 × 10−8 | 7.93 × 10−5 |
27 | rs12140153 | INADL | 1:62579891 | T/G | −5.18 | −6.10 | 0.00 | 2.21 × 10−7 | 1.03 × 10−9 |
28 | rs903518 | UBE2E2 | 3:23336968 | G/A | −3.93 | −4.22 | 0.00 | 8.32 × 10−5 | 2.42 × 10−5 |
29 | rs78580841 | CCDC12 | 3:46986452 | T/C | 4.05 | 4.78 | 0.00 | 5.03 × 10−5 | 1.72 × 10−6 |
30 | rs1679147 | MRAS | 3:138097537 | A/G | 4.45 | −3.93 | 0.01 | 8.72 × 10−6 | 8.49 × 10−5 |
31 | rs17774982 | ST6GAL1 | 3:186684460 | C/T | −4.88 | −4.51 | 0.00 | 1.07 × 10−6 | 6.39 × 10−6 |
32 | rs1296328 | RP11-775H9.2 | 4:137083193 | A/C | 4.98 | 6.11 | 0.00 | 6.37 × 10−7 | 9.73 × 10−10 |
33 | rs1265945 | EHMT2 | 6:31861815 | G/A | −4.10 | 4.71 | 0.00 | 4.15 × 10−5 | 2.51 × 10−6 |
34 | rs734597 | Upstream: RPS17P5; |
6:50836279 | A/G | 6.06 | 5.12 | 0.00 | 1.35 × 10−9 | 2.99 × 10−7 |
35 | rs4434471 | Upstream: FTH1P5; |
6:51146875 | G/A | 4.02 | 4.37 | 0.00 | 5.94 × 10−5 | 1.24 × 10−5 |
36 | rs66930764 | Upstream: RP5-826L7.1; |
6:164103243 | A/G | −5.02 | −4.38 | 0.00 | 5.24 × 10−7 | 1.21 × 10−5 |
37 | rs11555134 | GRB10 | 7:50659193 | T/C | 4.30 | −5.30 | 0.00 | 1.75 × 10−5 | 1.17 × 10−7 |
38 | rs77655131 | ORAI2 | 7:102086552 | T/C | 4.94 | −5.54 | 0.00 | 7.70 × 10−7 | 3.03 × 10−8 |
39 | rs11496066 | FBXL13 | 7:102486254 | C/T | −5.18 | 5.90 | 0.00 | 2.21 × 10−7 | 3.62 × 10−9 |
40 | rs62482405 | PSMC2 | 7:102987583 | G/T | 4.36 | −4.09 | 0.01 | 1.29 × 10−5 | 4.23 × 10−5 |
41 | rs3808478 | TRPS1 | 8:116678277 | C/T | −4.00 | 4.86 | 0.00 | 6.43 × 10−5 | 1.15 × 10−6 |
42 | rs6559752 | C9orf64 | 9:86570075 | T/C | −3.80 | 4.17 | 0.01 | 1.44 × 10−4 | 3.09 × 10−5 |
43 | rs6478623 | DENND1A | 9:126315123 | G/T | 3.88 | −4.68 | 0.01 | 1.06 × 10−4 | 2.81 × 10−6 |
44 | rs11145756 | SEC16A | 9:139364585 | G/A | −4.63 | 4.09 | 0.01 | 3.64 × 10−6 | 4.24 × 10−5 |
45 | rs10998304 | TET1 | 10:70342775 | C/T | 4.08 | −4.36 | 0.00 | 4.41 × 10−5 | 1.28 × 10−5 |
46 | rs143539037 | CPEB3 | 10:93827055 | T/C | 5.92 | −3.92 | 0.01 | 3.26 × 10−9 | 8.80 × 10−5 |
47 | rs11039307 | Upstream: FAM180B; |
11:47611152 | T/C | 5.22 | 4.83 | 0.00 | 1.77 × 10−7 | 1.37 × 10−6 |
48 | rs11039358 | FNBP4 | 11:47746962 | G/A | 4.52 | 4.30 | 0.00 | 6.10 × 10−6 | 1.72 × 10−5 |
49 | rs4237555 | Upstream: MTNR1B; |
11:92725803 | C/T | −7.86 | −4.85 | 0.00 | 3.84 × 10−15 | 1.22 × 10−6 |
50 | rs4606726 | PDILT | 16:20383700 | G/A | −3.83 | −3.97 | 0.01 | 1.27 × 10−4 | 7.10 × 10−5 |
51 | rs8047587 | FTO | 16:53798622 | T/G | 16.19 | 7.42 | 0.00 | 6.29 × 10−59 | 1.19 × 10−13 |
52 | rs217184 | TXNL4B | 16:72105965 | C/T | −3.98 | 4.06 | 0.01 | 6.91 × 10−5 | 4.99 × 10−5 |
52 | rs217184 | HPR | 16:72105965 | C/T | −3.98 | 4.06 | 0.01 | 6.91 × 10−5 | 4.99 × 10−5 |
53 | rs3816511 | PEMT | 17:17409401 | G/A | 3.77 | 4.79 | 0.01 | 1.61 × 10−4 | 1.63 × 10−6 |
54 | rs1371319 | Upstream: RP11-687D19.1; |
18:36277087 | C/T | 4.50 | 4.22 | 0.00 | 6.94 × 10−6 | 2.45 × 10−5 |
55 | rs17596995 | TCF4 | 18:53166594 | A/G | −4.25 | −4.94 | 0.00 | 2.12 × 10−5 | 7.66 × 10−7 |
56 | rs5762622 | TTC28 | 22:28835458 | A/G | 4.28 | −4.32 | 0.00 | 1.87 × 10−5 | 1.57 × 10−5 |
57 | rs5757906 | TNRC6B | 22:40687757 | C/T | −3.91 | −4.27 | 0.00 | 9.24 × 10−5 | 1.91 × 10−5 |
58 | rs28741121 | XRCC6 | 22:42025823 | A/G | −4.07 | −4.19 | 0.00 | 4.72 × 10−5 | 2.74 × 10−5 |
Abbreviations: SNP, single nucleotide polymorphisms; Chr, chromosome; Pos, position; A1, allele 1; A2, allele 2; FDR, false discovery rate.
Causal relationship between gene expression and type 2 diabetes, insomnia, chronotype, and sleep duration.
Genes | Type 2 Diabetes | Insomnia | Chronotype | Sleep Duration | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NIV | OR | 95% CI | p | NIV | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
ENSA | 2 | 1.10 | 1.10 |
0.1119 | 2 | 1.14 | 1.14 |
0.0013 | 0.96 | 0.96 |
0.4454 | 1.01 | 1.01 |
0.6732 |
CPEB3 | 1 | 1.43 | 1.43 |
0.0000 | ||||||||||
MYBPC3 | 6 | 0.95 | 0.95 |
0.0173 | 5 | 1.02 | 1.02 |
0.2920 | 1.00 | 1.00 |
0.5591 | 0.99 | 0.99 |
0.0880 |
MYRF | 1 | 0.94 | 0.94 |
0.0049 | 1 | 1.03 | 1.03 |
0.0581 | 1.00 | 1.00 |
0.8016 | 1.01 | 1.01 |
0.1302 |
KLHL29 | 2 | 0.99 | 0.99 |
0.7417 | 2 | 0.89 | 0.89 |
0.0008 | 1.00 | 1.00 |
0.9629 | 1.03 | 1.03 |
0.1057 |
DNMT3A | 1 | 1.07 | 1.07 |
0.1161 | ||||||||||
XRCC6 | 2 | 1.06 | 1.06 |
0.4503 | 2 | 1.03 | 1.03 |
0.0469 | 0.97 | 0.97 |
0.0002 | 1.01 | 1.01 |
0.1748 |
PCCB | 3 | 1.03 | 1.03 |
0.4567 | 3 | 1.00 | 1.00 |
0.8452 | 1.01 | 1.01 |
0.3804 | 1.00 | 1.00 |
0.8049 |
MAD1L1 | 4 | 1.00 | 1.00 |
0.8834 | 4 | 1.02 | 1.02 |
0.1612 | 1.00 | 1(0.98–1.02) | 0.7269 | 0.99 | 0.99 |
0.0167 |
PMPCA | 1 | 0.74 | 0.74 |
0.0003 | 1 | 0.93 | 0.93 |
0.3157 | 1.15 | 1.15 |
0.0000 | 0.99 | 0.99 |
0.7955 |
INPP5E | 4 | 1.10 | 1.10 |
0.0000 | 4 | 1.00 | 1.00 |
0.9185 | 0.98 | 0.98 |
0.0001 | 1.00 | 1.00 |
0.8376 |
SEC16A | 2 | 1.08 | 1.08 |
0.0000 |
NIV, number of instrumental variables; OR, odds ratio; CI, confidence interval; p, strength of evidence against the null hypothesis of no association between variant and outcome.
Supplementary Materials
The following supporting information can be downloaded at:
References
1. Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Acids Res.; 2019; 47, pp. D1005-D1012. [DOI: https://dx.doi.org/10.1093/nar/gky1120] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30445434]
2. Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract.; 2019; 157, 107843. [DOI: https://dx.doi.org/10.1016/j.diabres.2019.107843] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31518657]
3. Vujkovic, M.; Keaton, J.M.; Lynch, J.A.; Miller, D.R.; Zhou, J.; Tcheandjieu, C.; Huffman, J.E.; Assimes, T.L.; Lorenz, K.; Zhu, X. et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat. Genet.; 2020; 52, pp. 680-691. [DOI: https://dx.doi.org/10.1038/s41588-020-0637-y] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/32541925]
4. Almgren, P.; Lehtovirta, M.; Isomaa, B.; Sarelin, L.; Taskinen, M.R.; Lyssenko, V.; Tuomi, T.; Groop, L. Heritability and familiality of type 2 diabetes and related quantitative traits in the Botnia Study. Diabetologia; 2011; 54, pp. 2811-2819. [DOI: https://dx.doi.org/10.1007/s00125-011-2267-5]
5. Udler, M.S.; McCarthy, M.I.; Florez, J.C.; Mahajan, A. Genetic Risk Scores for Diabetes Diagnosis and Precision Medicine. Endocr. Rev.; 2019; 40, pp. 1500-1520. [DOI: https://dx.doi.org/10.1210/er.2019-00088]
6. Watanabe, K.; Stringer, S.; Frei, O.; Umićević Mirkov, M.; de Leeuw, C.; Polderman, T.J.C.; van der Sluis, S.; Andreassen, O.A.; Neale, B.M.; Posthuma, D. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet.; 2019; 51, pp. 1339-1348. [DOI: https://dx.doi.org/10.1038/s41588-019-0481-0]
7. Desikan, R.S.; Schork, A.J.; Wang, Y.; Thompson, W.K.; Dehghan, A.; Ridker, P.M.; Chasman, D.I.; McEvoy, L.K.; Holland, D.; Chen, C.H. et al. Polygenic Overlap Between C-Reactive Protein, Plasma Lipids, and Alzheimer Disease. Circulation; 2015; 131, pp. 2061-2069. [DOI: https://dx.doi.org/10.1161/CIRCULATIONAHA.115.015489]
8. Andreassen, O.A.; Thompson, W.K.; Dale, A.M. Boosting the power of schizophrenia genetics by leveraging new statistical tools. Schizophr. Bull.; 2014; 40, pp. 13-17. [DOI: https://dx.doi.org/10.1093/schbul/sbt168]
9. Schork, A.J.; Wang, Y.; Thompson, W.K.; Dale, A.M.; Andreassen, O.A. New statistical approaches exploit the polygenic architecture of schizophrenia--implications for the underlying neurobiology. Curr. Opin. Neurobiol.; 2016; 36, pp. 89-98. [DOI: https://dx.doi.org/10.1016/j.conb.2015.10.008]
10. Hammerschlag, A.R.; Stringer, S.; de Leeuw, C.A.; Sniekers, S.; Taskesen, E.; Watanabe, K.; Blanken, T.F.; Dekker, K.; Te Lindert, B.H.W.; Wassing, R. et al. Genome-wide association analysis of insomnia complaints identifies risk genes and genetic overlap with psychiatric and metabolic traits. Nat. Genet.; 2017; 49, pp. 1584-1592. [DOI: https://dx.doi.org/10.1038/ng.3888]
11. Vgontzas, A.N.; Liao, D.; Pejovic, S.; Calhoun, S.; Karataraki, M.; Bixler, E.O. Insomnia with objective short sleep duration is associated with type 2 diabetes: A population-based study. Diabetes Care; 2009; 32, pp. 1980-1985. [DOI: https://dx.doi.org/10.2337/dc09-0284] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19641160]
12. Cespedes, E.M.; Dudley, K.A.; Sotres-Alvarez, D.; Zee, P.C.; Daviglus, M.L.; Shah, N.A.; Talavera, G.A.; Gallo, L.C.; Mattei, J.; Qi, Q. et al. Joint associations of insomnia and sleep duration with prevalent diabetes: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). J. Diabetes; 2016; 8, pp. 387-397. [DOI: https://dx.doi.org/10.1111/1753-0407.12308] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25952169]
13. Gao, X.; Sun, H.; Zhang, Y.; Liu, L.; Wang, J.; Wang, T. Investigating Causal Relations Between Sleep-Related Traits and Risk of Type 2 Diabetes Mellitus: A Mendelian Randomization Study. Front. Genet.; 2020; 11, 607865. [DOI: https://dx.doi.org/10.3389/fgene.2020.607865] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33384720]
14. Buxton, O.M.; Pavlova, M.; Reid, E.W.; Wang, W.; Simonson, D.C.; Adler, G.K. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes; 2010; 59, pp. 2126-2133. [DOI: https://dx.doi.org/10.2337/db09-0699]
15. Leproult, R.; Deliens, G.; Gilson, M.; Peigneux, P. Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction. Sleep; 2015; 38, pp. 707-715. [DOI: https://dx.doi.org/10.5665/sleep.4660]
16. Dashti, H.S.; Redline, S.; Saxena, R. Polygenic risk score identifies associations between sleep duration and diseases determined from an electronic medical record biobank. Sleep; 2019; 42, zsy247. [DOI: https://dx.doi.org/10.1093/sleep/zsy247]
17. Byrne, E.M. The relationship between insomnia and complex diseases—Insights from genetic data. Genome Med.; 2019; 11, 57. [DOI: https://dx.doi.org/10.1186/s13073-019-0668-0]
18. Adan, A.; Archer, S.N.; Hidalgo, M.P.; Di Milia, L.; Natale, V.; Randler, C. Circadian typology: A comprehensive review. Chronobiol. Int.; 2012; 29, pp. 1153-1175. [DOI: https://dx.doi.org/10.3109/07420528.2012.719971]
19. Tonetti, L.; Adan, A.; Di Milia, L.; Randler, C.; Natale, V. Measures of circadian preference in childhood and adolescence: A review. Eur. Psychiatry J. Assoc. Eur. Psychiatr.; 2015; 30, pp. 576-582. [DOI: https://dx.doi.org/10.1016/j.eurpsy.2015.01.006]
20. Baron, K.G.; Reid, K.J. Chapter 26—Relationship between Circadian Rhythms, Feeding, and Obesity. Modulation of Sleep by Obesity, Diabetes, Age, and Diet; Watson, R.R. Academic Press: San Diego, CA, USA, 2015; pp. 243-253.
21. Mahajan, A.; Taliun, D.; Thurner, M.; Robertson, N.R.; Torres, J.M.; Rayner, N.W.; Payne, A.J.; Steinthorsdottir, V.; Scott, R.A.; Grarup, N. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet.; 2018; 50, pp. 1505-1513. [DOI: https://dx.doi.org/10.1038/s41588-018-0241-6]
22. Chen, J.; Spracklen, C.N.; Marenne, G.; Varshney, A.; Corbin, L.J.; Luan, J.a.; Willems, S.M.; Wu, Y.; Zhang, X.; Horikoshi, M. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet.; 2021; 53, pp. 840-860. [DOI: https://dx.doi.org/10.1038/s41588-021-00852-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34059833]
23. Jansen, P.R.; Watanabe, K.; Stringer, S.; Skene, N.; Bryois, J.; Hammerschlag, A.R.; de Leeuw, C.A.; Benjamins, J.S.; Muñoz-Manchado, A.B.; Nagel, M. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet.; 2019; 51, pp. 394-403. [DOI: https://dx.doi.org/10.1038/s41588-018-0333-3] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30804565]
24. Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med.; 2015; 12, e1001779. [DOI: https://dx.doi.org/10.1371/journal.pmed.1001779] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25826379]
25. Smeland, O.B.; Frei, O.; Shadrin, A.; O’Connell, K.; Fan, C.-C.; Bahrami, S.; Holland, D.; Djurovic, S.; Thompson, W.K.; Dale, A.M. Discovery of shared genomic loci using the conditional false discovery rate approach. Hum. Genet.; 2020; 139, pp. 85-94. [DOI: https://dx.doi.org/10.1007/s00439-019-02060-2]
26. Chelala, C.; Khan, A.; Lemoine, N.R. SNPnexus: A web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms. Bioinformatics; 2009; 25, pp. 655-661. [DOI: https://dx.doi.org/10.1093/bioinformatics/btn653]
27. Kircher, M.; Witten, D.M.; Jain, P.; O’roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet.; 2014; 46, pp. 310-315. [DOI: https://dx.doi.org/10.1038/ng.2892]
28. Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res.; 2012; 22, pp. 1790-1797. [DOI: https://dx.doi.org/10.1101/gr.137323.112]
29. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res.; 2000; 28, pp. 27-30. [DOI: https://dx.doi.org/10.1093/nar/28.1.27]
30. Võsa, U.; Claringbould, A.; Westra, H.-J.; Bonder, M.J.; Deelen, P.; Zeng, B.; Kirsten, H.; Saha, A.; Kreuzhuber, R.; Yazar, S. et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet.; 2021; 53, pp. 1300-1310. [DOI: https://dx.doi.org/10.1038/s41588-021-00913-z]
31. Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ; 2018; 362, k601. [DOI: https://dx.doi.org/10.1136/bmj.k601]
32. Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife; 2018; 7, e34408. [DOI: https://dx.doi.org/10.7554/eLife.34408] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29846171]
33. Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol.; 2015; 44, pp. 512-525. [DOI: https://dx.doi.org/10.1093/ije/dyv080] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26050253]
34. Prats-Puig, A.; Grau-Cabrera, P.; Riera-Pérez, E.; Cortés-Marina, R.; Fortea, E.; Soriano-Rodríguez, P.; de Zegher, F.; Ibánez, L.; Bassols, J.; López-Bermejo, A. Variations in the obesity genes FTO, TMEM18 and NRXN3 influence the vulnerability of children to weight gain induced by short sleep duration. Int. J. Obes.; 2013; 37, pp. 182-187. [DOI: https://dx.doi.org/10.1038/ijo.2012.27] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22391885]
35. Stratigopoulos, G.; Padilla, S.L.; LeDuc, C.A.; Watson, E.; Hattersley, A.T.; McCarthy, M.I.; Zeltser, L.M.; Chung, W.K.; Leibel, R.L. Regulation of Fto/Ftm gene expression in mice and humans. Am. J. Physiol. Regul. Integr. Comp. Physiol.; 2008; 294, pp. R1185-R1196. [DOI: https://dx.doi.org/10.1152/ajpregu.00839.2007]
36. Gerken, T.; Girard, C.A.; Tung, Y.C.; Webby, C.J.; Saudek, V.; Hewitson, K.S.; Yeo, G.S.; McDonough, M.A.; Cunliffe, S.; McNeill, L.A. et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science; 2007; 318, pp. 1469-1472. [DOI: https://dx.doi.org/10.1126/science.1151710]
37. Berthoud, H.R.; Morrison, C. The brain, appetite, and obesity. Annu. Rev. Psychol.; 2008; 59, pp. 55-92. [DOI: https://dx.doi.org/10.1146/annurev.psych.59.103006.093551]
38. Héron, L.; Virsolvy, A.; Apiou, F.; Le Cam, A.; Bataille, D. Isolation, characterization, and chromosomal localization of the human ENSA gene that encodes alpha-endosulfine, a regulator of beta-cell K(ATP) channels. Diabetes; 1999; 48, pp. 1873-1876. [DOI: https://dx.doi.org/10.2337/diabetes.48.9.1873]
39. Takahashi, Y.; Kubota, M.; Kosaki, R.; Kosaki, K.; Ishiguro, A. A severe form of autosomal recessive spinocerebellar ataxia associated with novel PMPCA variants. Brain Dev.; 2021; 43, pp. 464-469. [DOI: https://dx.doi.org/10.1016/j.braindev.2020.11.008]
40. Choquet, K.; Zurita-Rendón, O.; La Piana, R.; Yang, S.; Dicaire, M.J.; Boycott, K.M.; Majewski, J.; Shoubridge, E.A.; Brais, B.; Tétreault, M. Autosomal recessive cerebellar ataxia caused by a homozygous mutation in PMPCA. Brain A J. Neurol.; 2016; 139, e19. [DOI: https://dx.doi.org/10.1093/brain/awv362]
41. Jobling, R.K.; Assoum, M.; Gakh, O.; Blaser, S.; Raiman, J.A.; Mignot, C.; Roze, E.; Dürr, A.; Brice, A.; Lévy, N. et al. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain A J. Neurol.; 2015; 138, pp. 1505-1517. [DOI: https://dx.doi.org/10.1093/brain/awv057]
42. Corbi, G.; Conti, V.; Russomanno, G.; Longobardi, G.; Furgi, G.; Filippelli, A.; Ferrara, N. Adrenergic signaling and oxidative stress: A role for sirtuins?. Front. Physiol.; 2013; 4, 324. [DOI: https://dx.doi.org/10.3389/fphys.2013.00324] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24265619]
43. Nauck, M.A.; Wefers, J.; Meier, J.J. Treatment of type 2 diabetes: Challenges, hopes, and anticipated successes. Lancet. Diabetes Endocrinol.; 2021; 9, pp. 525-544. [DOI: https://dx.doi.org/10.1016/S2213-8587(21)00113-3]
44. Lotti, S.; Pagliai, G.; Colombini, B.; Sofi, F.; Dinu, M. Chronotype Differences in Energy Intake, Cardiometabolic Risk Parameters, Cancer and Depression: A Systematic Review with Meta-analysis of Observational Studies. Adv. Nutr.; 2021; [DOI: https://dx.doi.org/10.1093/advances/nmab115] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34549270]
45. Quinn, L.M.; Hadjiconstantinou, M.; Brady, E.M.; Bodicoat, D.H.; Henson, J.J.; Hall, A.P.; Davies, M.J. Chronotype and well-being in adults with established type 2 diabetes: A cross-sectional study. Diabet. Med. A J. Br. Diabet. Assoc.; 2021; e14690. [DOI: https://dx.doi.org/10.1111/dme.14690]
46. Brown, M.R.; Sen, S.K.; Mazzone, A.; Her, T.K.; Xiong, Y.; Lee, J.-H.; Javeed, N.; Colwell, C.S.; Rakshit, K.; LeBrasseur, N.K. et al. Time-restricted feeding prevents deleterious metabolic effects of circadian disruption through epigenetic control of β; cell function. Sci. Adv.; 2021; 7, eabg6856. [DOI: https://dx.doi.org/10.1126/sciadv.abg6856] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34910509]
47. Reis-Canaan, J.C.; Canaan, M.M.; Costa, P.D.; Rodrigues-Juliatte, T.P.; Pereira, M.C.A.; Castelo, P.M.; Pardi, V.; M Murata, R.; Pereira, L.J. Association between Chronotype and Nutritional, Clinical and Sociobehavioral Characteristics of Adults Assisted by a Public Health Care System in Brazil. Nutrients; 2021; 13, 2260. [DOI: https://dx.doi.org/10.3390/nu13072260] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34209002]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Accumulating evidence suggests a relationship between type 2 diabetes mellitus and sleep problems. A comprehensive study is needed to decipher whether shared polygenic risk variants exist between diabetic traits and sleep traits. Methods: We integrated summary statistics from different genome-wide association studies and investigated overlap in single-nucleotide polymorphisms (SNPs) associated with diabetes-related traits (type 2 diabetes, fasting glucose, fasting insulin, and glycated hemoglobin) and sleep traits (insomnia symptoms, sleep duration, and chronotype) using a conditional/conjunctional false discovery rate approach. Pleiotropic genes were further evaluated for differential expression analysis, and we assessed their expression pattern effects on type 2 diabetes by Mendelian randomization (MR) analysis. Results: We observed extensive polygenic pleiotropy between diabetic traits and sleep traits. Fifty-eight independent genetic loci jointly influenced the risk of type 2 diabetes and the sleep traits of insomnia, sleep duration, and chronotype. The strongest shared locus between type 2 diabetes and sleep straits was FTO (lead SNP rs8047587). Type 2 diabetes (z score, 16.19; P = 6.29 × 10−59) and two sleep traits, sleep duration (z score, −6.66; P = 2.66 × 10−11) and chronotype (z score, 7.42; P = 1.19 × 10−13), were shared. Two of the pleiotropic genes, ENSA and PMPCA, were validated to be differentially expressed in type 2 diabetes, and PMPCA showed a slight protective effect on type 2 diabetes in MR analysis. Conclusions: Our study provided evidence for the polygenic overlap between diabetic traits and sleep traits, of which the expression of PMPCA may play a crucial role and provide support of the hazardous effect of being an “evening” person on diabetes risk.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer