It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To support multi-source data stream generated from Internet of Things devices, edge computing emerges as a promising computing pattern with low latency and high bandwidth compared to cloud computing. To enhance the performance of edge computing within limited communication and computation resources, we study a cloud-edge-end computing architecture, where one cloud server and multiple computational access points can collaboratively process the compute-intensive data streams that come from multiple sources. Moreover, a multi-source environment is considered, in which the wireless channel and the characteristic of the data stream are time-varying. To adapt to the dynamic network environment, we first formulate the optimization problem as a markov decision process and then decompose it into a data stream offloading ratio assignment sub-problem and a resource allocation sub-problem. Meanwhile, in order to reduce the action space, we further design a novel approach that combines the proximal policy optimization (PPO) scheme with convex optimization, where the PPO is used for the data stream offloading assignment, while the convex optimization is employed for the resource allocation. The simulated outcomes in this work can help the development of the application of the multi-source data stream.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Guangzhou University, School of Computer Science, Guangzhou, China (GRID:grid.411863.9) (ISNI:0000 0001 0067 3588)
2 Guangzhou Metro Group Co., Ltd, Guangzhou, China (GRID:grid.495405.9)
3 South China Agricultural University, School of Mathematics and Information, Software, Guangzhou, China (GRID:grid.20561.30) (ISNI:0000 0000 9546 5767)